

Introduction to Data Engineering on Databricks..3

Guidance and Best Practices... 13
Databricks Assistant Tips and Tricks for Data Engineers.. 14

Applying Software Development and DevOps Best Practices to Delta Live Table Pipelines.. 22

Unity Catalog Governance in Action: Monitoring, Reporting and Lineage.. 32

Scalable Spark Structured Streaming for REST API Destinations... 40

A Data Engineer’s Guide to Optimized Streaming With Protobuf and Delta Live Tables.. 47

Design Patterns for Batch Processing in Financial Services..58

How to Set Up Your First Federated Lakehouse... 71

Orchestrating Data Analytics With Databricks Workflows.. 77

Schema Management and Drift Scenarios via Databricks Auto Loader..83

From Idea to Code: Building With the Databricks SDK for Python...96

Ready-to-Use Notebooks and Datasets... 104

Case Studies ... 106
Cox Automotive... 107

Block... 110

Trek Bicycle..113

Coastal Community Bank... 116

Powys Teaching Health Board (PTHB)..122

Contents

2E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

3E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

01 Introduction to
Data Engineering on Databricks

E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

4E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

A recent MIT Tech Review Report shows that 88% of surveyed organizations are
either investing in, adopting or experimenting with generative AI (GenAI) and 71%
intend to build their own GenAI models. This increased interest in AI is fueling
major investments as AI becomes a differentiating competitive advantage in
every industry. As more organizations work to leverage their proprietary data for
this purpose, many encounter the same hard truth:

The best GenAI models in the world will not succeed without good data.

This reality emphasizes the importance of building reliable data pipelines that
can ingest or stream vast amounts of data efficiently and ensure high data
quality. In other words, good data engineering is an essential component of
success in every data and AI initiative and especially for GenAI.

Using practical guidance, useful patterns, best practices and real-world
examples, this book will provide you with an understanding of how the
Databricks Data Intelligence Platform helps data engineers meet the
challenges of this new era.

What is data engineering?
Data engineering is the practice of taking raw data from a data source and
processing it so it’s stored and organized for a downstream use case such
as data analytics, business intelligence (BI) or machine learning (ML) model
training. In other words, it’s the process of preparing data so value can be
extracted from it.

A useful way of thinking about data engineering is by using the following
framework, which includes three main parts:

1.	 Ingest

Data ingestion is the process of bringing data from one or more data sources

into a data platform. These data sources can be files stored on-premises or

on cloud storage services, databases, applications and increasingly — data

streams that produce real-time events.

2.	Transform

Data transformation takes raw ingested data and uses a series of steps

(referred to as “transformations”) to filter, standardize, clean and finally

aggregate it so it’s stored in a usable way. A popular pattern is the medallion

architecture, which defines three stages in the process — Bronze, Silver

and Gold.

3.	Orchestrate

Data orchestration refers to the way a data pipeline that performs ingestion

and transformation is scheduled and monitored as well as the control of the

various pipeline steps and handling failures (e.g., by executing a retry run).

https://www.databricks.com/resources/analyst-papers/laying-foundation-data-and-ai-led-growth
https://www.databricks.com/product/data-intelligence-platform
https://www.databricks.com/solutions/data-engineering
https://www.databricks.com/glossary/medallion-architecture
https://www.databricks.com/glossary/medallion-architecture

Challenges of data engineering in the AI era
As previously mentioned, data engineering is key to ensuring reliable data for
AI initiatives. Data engineers who build and maintain ETL pipelines and the
data infrastructure that underpins analytics and AI workloads face specific
challenges in this fast-moving landscape.

	■ Handling real-time data: From mobile applications to sensor data on

factory floors, more and more data is created and streamed in real

time and requires low-latency processing so it can be used in real-time

decision-making.

	■ Scaling data pipelines reliably: With data coming in large quantities

and often in real time, scaling the compute infrastructure that runs

data pipelines is challenging, especially when trying to keep costs low

and performance high. Running data pipelines reliably, monitoring data

pipelines and troubleshooting when failures occur are some of the most

important responsibilities of data engineers.

	■ Data quality: “Garbage in, garbage out.” High data quality is essential to

training high-quality models and gaining actionable insights from data.

Ensuring data quality is a key challenge for data engineers.

	■ Governance and security: Data governance is becoming a key challenge

for organizations who find their data spread across multiple systems

with increasingly larger numbers of internal teams looking to access and

utilize it for different purposes. Securing and governing data is also an

important regulatory concern many organizations face, especially in highly

regulated industries.

These challenges stress the importance of choosing the right data platform for
navigating new waters in the age of AI. But a data platform in this new age can
also go beyond addressing just the challenges of building AI solutions. The right
platform can improve the experience and productivity of data practitioners,
including data engineers, by infusing intelligence and using AI to assist with
daily engineering tasks.

In other words, the new data platform is a data intelligence platform.

5E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

The Databaricks Data Intelligence Platform
Databricks’ mission is to democratize data and AI, allowing organizations
to use their unique data to build or fine-tune their own machine learning
and generative AI models so they can produce new insights that lead to
business innovation.

The Databricks Data Intelligence Platform is built on lakehouse architecture
to provide an open, unified foundation for all data and governance, and it’s
powered by a Data Intelligence Engine that understands the uniqueness of your
data. With these capabilities at its foundation, the Data Intelligence Platform
lets Databricks customers run a variety of workloads, from business intelligence
and data warehousing to AI and data science.

To get a better understanding of the Databricks Platform, here’s an overview of

the different parts of the architecture as it relates to data engineering.

6E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/product/data-lakehouse

Data reliability and performance with Delta Lake

To bring openness, reliability and lifecycle management to data lakes, the

Databricks lakehouse architecture is built on the foundation of Delta Lake, an

open source, highly performant storage format that solves challenges around

unstructured/structured data ingestion, the application of data quality, difficulties

with deleting data for compliance or issues with modifying data for data capture.

Delta Lake UniForm users can now read Delta tables with Hudi and Iceberg

clients, keeping them in control of their data. In addition, Delta Sharing enables

easy and secure sharing of datasets inside and outside the organization.

Unified governance with Unity Catalog

With Unity Catalog, data engineering and governance teams benefit from an

enterprisewide data catalog with a single interface to manage permissions,

centralize auditing, automatically track data lineage down to the column level

and share data across platforms, clouds and regions.

7E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/product/delta-lake-on-databricks
https://www.databricks.com/product/delta-lake-on-databricks
https://www.databricks.com/product/delta-sharing
https://www.databricks.com/product/unity-catalog

DatabricksIQ — the Data Intelligence Engine

At the heart of the Data Intelligence Platform lies DatabricksIQ, the engine that

uses AI to infuse intelligence throughout the platform. DatabricksIQ is a first-of-

its-kind Data Intelligence Engine that uses AI to power all parts of the Databricks

Data Intelligence Platform. It uses signals across your entire Databricks

environment, including Unity Catalog, dashboards, notebooks, data pipelines and

documentation, to create highly specialized and accurate generative AI models

that understand your data, your usage patterns and your business terminology.

Reliable data pipelines and real-time stream processing with Delta Live Tables

Delta Live Tables (DLT) is a declarative ETL framework that helps data teams

simplify and make ETL cost-effective in streaming and batch. Simply define

the transformations you want to perform on your data and let DLT pipelines

automatically handle task orchestration, cluster management, monitoring, data

quality and error management. Engineers can treat their data as code and

apply modern software engineering best practices like testing, error handling,

monitoring and documentation to deploy reliable pipelines at scale. DLT fully

supports both Python and SQL and is tailored to work with both streaming and

batch workloads.

Unified data orchestration with Databricks Workflows

Databricks Workflows offers a simple, reliable orchestration solution for data

and AI on the Data Intelligence Platform. Databricks Workflows lets you define

multi-step workflows to implement ETL pipelines, ML training workflows and

more. It offers enhanced control flow capabilities and supports different task

types and workflow triggering options. As the platform native orchestrator,

Databricks Workflows also provides advanced observability to monitor and

visualize workflow execution along with alerting capabilities for when issues arise.

Databricks Worklfows offers serverless compute options so you can leverage

smart scaling and efficient task execution.

8E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/product/databricksiq
https://www.databricks.com/product/delta-live-tables
https://www.databricks.com/product/workflows

A rich ecosystem of data solutions

The Data Intelligence Platform is built on open source technologies and uses open standards so leading data solutions can be leveraged with anything you build on the

lakehouse. A large collection of technology partners makes it easy and simple to integrate the technologies you rely on when migrating to Databricks — and you are not

locked into a closed data technology stack.

The Data Intelligence Platform integrates with a large collection of technologies

9E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/company/partners/technology

A unified set of tools for real-time data processing

Why data engineers choose the Data Intelligence Platform
So how does the Data Intelligence Platform help with each of the data engineering challenges discussed earlier?

	■ Real-time data stream processing: The Data Intelligence Platform simplifies development and operations by automating the production aspects associated with

building and maintaining real-time data workloads. Delta Live Tables provides a declarative way to define streaming ETL pipelines and Spark Structured Streaming

helps build real-time applications for real-time decision-making.

Lakehouse Platform

Workflows for end-to-end orchestration

Real -Time BI Apps

Real -Time AI Apps

Predictive
Maintenance

Personalized
Offers

Patient
Diagnostics

Real-Time Operational Apps

Alerts Fraud
Detection

Dynamic
Pricing

Real-Time Applications with

Spark Structured Streaming

Real-Time Analytics with

Databricks SQL

Real-Time Machine Learning
with

Databricks ML

Unity Catalog for data governance and sharing

Delta Lake for open and reliable data storage

Photon for lightning-fast data processing

Streaming ETL with

Delta Live Tables

Messag
e Buses

Cloud
Storage

Data
Sources

Mobile & IoT
Data

Application
Events

SaaS
Applications

Machine &
Application Logs

On-premises
Systems

Data
Warehouses

10E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

	■ Reliable data pipelines at scale: Both Delta Live Tables and Databricks

Workflows use smart autoscaling and auto-optimized resource

management to handle high-scaled workloads. With lakehouse

architecture, the high scalability of data lakes is combined with the high

reliability of data warehouses, thanks to Delta Lake — the storage format

that sits at the foundation of the lakehouse.

	■ Data quality: High reliability — starting at the storage level with Delta

Lake and coupled with data quality–specific features offered by Delta

Live Tables — ensures high data quality. These features include setting

data “expectations” to handle corrupt or missing data as well as automatic

retries. In addition, both Databricks Workflows and Delta Live Tables

provide full observability to data engineers, making issue resolution faster

and easier.

	■ Unified governance with secured data sharing: Unity Catalog provides

a single governance model for the entire platform so every dataset and

pipeline are governed in a consistent way. Datasets are discoverable

and can be securely shared with internal or external teams using Delta

Sharing. In addition, because Unity Catalog is a cross-platform governance

solution, it provides valuable lineage information so it’s easy to have a full

understanding of how each dataset and table is used downstream and

where it originates upstream.

In addition, data engineers using the Data Intelligence Platform benefit

 from cutting-edge innovations in the form of AI-infused intelligence in

the form of DatabricksIQ:

	■ AI-powered productivity: Specifically useful for data engineers,

DatabricksIQ powers the Databricks Assistant, a context-aware AI

assistant that offers a conversational API to query data, generate code,

explain code queries and even fix issues.

11E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/product/delta-live-tables
https://www.databricks.com/product/workflows
https://www.databricks.com/product/workflows
https://www.databricks.com/product/delta-lake-on-databricks
https://www.databricks.com/product/delta-lake-on-databricks
https://www.databricks.com/product/unity-catalog
https://www.databricks.com/product/databricks-assistant

Conclusion
As organizations strive to innovate with AI, data engineering is a focal point for

success by delivering reliable, real-time data pipelines that make AI possible.

With the Data Intelligence Platform, built on the lakehouse architecture and

powered by DatabricksIQ, data engineers are set up for success in dealing

with the critical challenges posed in the modern data landscape. By leaning

on the advanced capabilities of the Data Intelligence Platform, data engineers

don’t need to spend as much time managing complex pipelines or dealing

with reliability, scalability and data quality issues. Instead, they can focus on

innovation and bringing more value to the organization.

FOLLOW PROVEN BEST PRACTICES

In the next section, we describe best practices for data engineering and

end-to-end use cases drawn from real-world examples. From data ingestion

and real-time processing to orchestration and data federation, you’ll learn how

to apply proven patterns and make the best use of the different capabilities

of the Data Intelligence Platform.

As you explore the rest of this guide, you can find datasets and code samples in

the various Databricks Solution Accelerators, so you can get your hands dirty

and start building on the Data Intelligence Platform.

12E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/solutions/accelerators

13E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

Guidance and Best Practices

E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

02

Databricks Assistant Tips and Tricks for
Data Engineers
by Jackie Zhang, Rafi Kurlansik and Richard Tomlinson

The generative AI revolution is transforming the way that teams work, and

Databricks Assistant leverages the best of these advancements. It allows you

to query data through a conversational interface, making you more productive

inside your Databricks Workspace. The Assistant is powered by DatabricksIQ,

the Data Intelligence Engine for Databricks, helping to ensure your data is

secured and responses are accurate and tailored to the specifics of your

enterprise. Databricks Assistant lets you describe your task in natural language

to generate, optimize, or debug complex code without interrupting your

developer experience.

In this chapter we’ll discuss how to get the most out of your Databricks Assistant

and focus on how the Assistant can improve the life of Data Engineers by

eliminating tedium, increasing productivity and immersion, and accelerating

time to value. We will follow up with a series of posts focused on different data

practitioner personas, so stay tuned for upcoming entries focused on data

scientists, SQL analysts, and more.

INGESTION

When working with Databricks as a data engineer, ingesting data into Delta

Lake tables is often the first step. Let’s take a look at two examples of how the

Assistant helps load data, one from APIs, and one from files in cloud storage.

For each, we will share the prompt and results. As mentioned in the 5 tips blog,

being specific in a prompt gives the best results, a technique consistently used

in this article.

To get data from the datausa.io API and load it into a Delta Lake table with

Python, we used the following prompt:

Help me ingest data from this API into a Delta Lake table:

https://datausa.io/api/data?drilldowns=Nation&measures=Population

Make sure to use PySpark, and be concise! If the Spark DataFrame columns have

any spaces in them, make sure to remove them from the Spark DF.

A similar prompt can be used to ingest JSON files from cloud storage into Delta

Lake tables, this time using SQL:

I have JSON files in a UC Volume here: /Volumes/rkurlansik/default/data_science/

sales_data.json

Write code to ingest this data into a Delta Lake table. Use SQL only,

and be concise!

14E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/blog/5-tips-get-most-out-your-databricks-assistant
https://datausa.io/api/data?drilldowns=Nation&measures=Population

TRANSFORMING DATA FROM UNSTRUCTURED
TO STRUCTURED

Following tidy data principles, any given cell of a table should contain a single

observation with a proper data type. Complex strings or nested data structures

are often at odds with this principle, and as a result, data engineering work

consists of extracting structured data from unstructured data. Let’s explore two

examples where the Assistant excels at this task — using regular expressions and

exploding nested data structures.

Regular expressions
Regular expressions are a means to extract structured data from messy strings,

but figuring out the correct regex takes time and is tedious. In this respect, the

Assistant is a boon for all data engineers who struggle with regex.

Consider this example using the Title column from the IMDb dataset:

This column contains two distinct observations — film title and release year. With

the following prompt, the Assistant identifies an appropriate regular expression to

parse the string into multiple columns.

Here is an example of the Title column in our dataset: 1. The Shawshank

Redemption (1994). The title name will be between the number and the

parentheses, and the release date is between parentheses. Write a function

that extracts both the release date and the title name from the Title column in

the imdb_raw DataFrame.

15E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

Providing an example of the string in our prompt helps the Assistant find the

correct result. If you are working with sensitive data, we recommend creating a

fake example that follows the same pattern. In any case, now you have one less

problem to worry about in your data engineering work.

Nested Structs, Arrays (JSON, XML, etc)
When ingesting data via API, JSON files in storage, or noSQL databases, the

resulting Spark DataFrames can be deeply nested and tricky to flatten correctly.

Take a look at this mock sales data in JSON format:

Data engineers may be asked to flatten the nested array and extract revenue

metrics for each product. Normally this task would take significant trial and

error — even in a case where the data is relatively straightforward. The Assistant,

however, being context-aware of the schemas of DataFrames you have in

memory, generates code to get the job done. Using a simple prompt, we get the

results we are looking for in seconds.

Write PySpark code to flatten the df and extract revenue for each product

and customer

16E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

REFACTORING , DEBUGGING AND OPTIMIZATION

Another scenario data engineers face is rewriting code authored by other

team members, either ones that may be more junior or have left the company.

In these cases, the Assistant can analyze and explain poorly written code by

understanding its context and intent. It can suggest more efficient algorithms,

refactor code for better readability, and add comments.

Improving documentation and maintainability
This Python code calculates the total cost of items in an online shopping cart.

The generated example below properly documents the code, and uses

generator expressions instead of conditional blocks to improve memory

utilization on larger datasets.

The use of conditional blocks in this code makes it hard to read and inefficient at

scale. Furthermore, there are no comments to explain what is happening. A good

place to begin is to ask the Assistant to explain the code step by step. Once the

data engineer understands the code, the Assistant can transform it, making it

more performant and readable with the following prompt:

Rewrite this code in a way that is more performant, commented properly, and

documented according to Python function documentation standards

1
2
3
4
5
6
7
8
9

10
11
12

def calculate_total(cart_items):
 total = 0
 for i in range(len(cart_items)):
 if cart_items[i]['type'] == 'book':
 discount = cart_items[i]['price'] * 0.05
 total += cart_items[i]['price'] - discount
 else:
 total += cart_items[i]['price']
 return total

cart_items = [{'name': 'Python Programming', 'type': 'book', 'price': 50},
 {'name': 'Laptop', 'type': 'electronics', 'price': 800}]
total_price = calculate_total(cart_items)

1
2
3

4
5

6
7
8
9

10
11
12
13
14
15
16

17
18
19
20

def calculate_total(cart_items):
 """
 Calculate the total price of items in the shopping cart.

 Apply a 5% discount to book items. The total is calculated by summing
 the prices, taking into account the discount for books.

 Parameters:
 cart_items (list of dict): A list of dictionaries, where each dictionary
 represents an item in the cart with keys 'name',
 'type', and 'price'.

 Returns:
 float: The total price of all items in the cart after discounts.
 """
 # Use a generator expression to iterate over cart items, applying a 5% discount
to books.
 return sum(item['price'] * 0.95 if item['type'] == 'book' else item['price'] for
item in cart_items)

Example usage
cart_items = [{'name': 'Python Programming', 'type': 'book', 'price': 50},
 {'name': 'Laptop', 'type': 'electronics', 'price': 800}]
total_price = calculate_total(cart_items)

17E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

Diagnosing errors
Inevitably, data engineers will need to debug. The Assistant eliminates the need

to open multiple browser tabs or switch contexts in order to identify the cause

of errors in code, and staying focused is a tremendous productivity boost. To

understand how this works with the Assistant, let’s create a simple PySpark

DataFrame and trigger an error.

In the above example, a typo is introduced when adding a new column to the

DataFrame. The zero in “10” is actually the letter “O”, leading to an invalid decimal

literal syntax error. The Assistant immediately offers to diagnose the error. It

correctly identifies the typo, and suggests corrected code that can be inserted

into the editor in the current cell. Diagnosing and correcting errors this way can

save hours of time spent debugging.

Transpiling pandas to PySpark
Pandas is one of the most successful data-wrangling libraries in Python and

is used by data scientists everywhere. Sticking with our JSON sales data, let’s

imagine a situation where a novice data scientist has done their best to flatten

the data using pandas. It isn’t pretty, it doesn’t follow best practices, but it

produces the correct output:

1
2

3
4

5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24

25
26
27
28

import pandas as pd
import json

with open("/Volumes/rkurlansik/default/data_science/sales_data.json") as file:
 data = json.load(file)

Bad practice: Manually initializing an empty DataFrame and using a deeply nested
for-loop to populate it.
df = pd.DataFrame(columns=['company', 'year', 'quarter', 'region_name', 'product_
name', 'units_sold', 'product_sales'])

for quarter in data['quarters']:
 for region in quarter['regions']:
 for product in region['products']:
 df = df.append({
 'company': data['company'],
 'year': data['year'],
 'quarter': quarter['quarter'],
 'region_name': region['name'],
 'product_name': product['name'],
 'units_sold': product['units_sold'],
 'product_sales': product['sales']
 }, ignore_index=True)

Inefficient conversion of columns after data has been appended
df['year'] = df['year'].astype(int)
df['units_sold'] = df['units_sold'].astype(int)
df['product_sales'] = df['product_sales'].astype(int)

Mixing access styles and modifying the dataframe in-place in an inconsistent
manner
df['company'] = df.company.apply(lambda x: x.upper())
df['product_name'] = df['product_name'].str.upper()

18E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

By default, Pandas is limited to running on a single machine. The data engineer

shouldn’t put this code into production and run it on billions of rows of data until

it is converted to PySpark. This conversion process includes ensuring the data

engineer understands the code and rewrites it in a way that is maintainable,

testable, and performant. The Assistant once again comes up with a better

solution in seconds.

Note the generated code includes creating a SparkSession, which isn’t required

in Databricks. Sometimes the Assistant, like any LLM, can be wrong or hallucinate.

You, the data engineer, are the ultimate author of your code and it is important to

review and understand any code generated before proceeding to the next task. If

you notice this type of behavior, adjust your prompt accordingly.

WRITING TESTS

One of the most important steps in data engineering is to write tests to ensure

your DataFrame transformation logic is correct, and to potentially catch any

corrupted data flowing through your pipeline. Continuing with our example

from the JSON sales data, the Assistant makes it a breeze to test if any of the

revenue columns are negative - as long as values in the revenue columns are

not less than zero, we can be confident that our data and transformations in this

case are correct.

19E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

We can build off this logic by asking the Assistant to incorporate the test into

PySpark’s native testing functionality, using the following prompt:

Write a test using assertDataFrameEqual from pyspark.testing.utils to check

that an empty DataFrame has the same number of rows as our negative

revenue DataFrame.

The Assistant obliges, providing working code to bootstrap our testing efforts.

GETTING HELP

Beyond a general capability to improve and understand code, the Assistant

possesses knowledge of the entire Databricks documentation and Knowledge

Base. This information is indexed on a regular basis and made available as

additional context for the Assistant via a RAG architecture. This allows users

to search for product functionality and configurations without leaving the

Databricks Platform.

For example, if you want to know details about the system environment for the

version of Databricks Runtime you are using, the Assistant can direct you to the

appropriate page in the Databricks documentation.

This example highlights the fact that being specific and adding detail to your

prompt yields better results. If we simply ask the Assistant to write tests for us

without any detail, our results will exhibit more variability in quality. Being specific

and clear in what we are looking for — a test using PySpark modules that builds

off the logic it wrote — generally will perform better than assuming the Assistant

can correctly guess at our intentions.

20E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

The Assistant can handle simple, descriptive, and conversational questions, enhancing the user experience in navigating Databricks’ features and resolving issues. It can

even help guide users in filing support tickets! For more details, read the announcement article.

CONCLUSION

The barrier to entry for quality data engineering has been lowered thanks to the power of generative AI with the Databricks Assistant. Whether you are a newcomer

looking for help on how to work with complex data structures or a seasoned veteran who wants regular expressions written for them, the Assistant will improve your

quality of life. Its core competency of understanding, generating, and documenting code boosts productivity for data engineers of all skill levels. To learn more, see the

Databricks documentation on how to get started with the Databricks Assistant today.

21E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/en/notebooks/databricks-assistant-faq.html

Applying Software Development and DevOps Best Practices to Delta Live Table Pipelines
by Alex Ott

Databricks Delta Live Tables (DLT) radically simplifies the development of the robust data processing pipelines by decreasing the amount of code that data engineers

need to write and maintain. And also reduces the need for data maintenance and infrastructure operations, while enabling users to seamlessly promote code and

pipelines configurations between environments. But people still need to perform testing of the code in the pipelines, and we often get questions on how people can

do it efficiently.

In this chapter we’ll cover the following items based on our experience working with multiple customers:

	■ How to apply DevOps best practices to Delta Live Tables

	■ How to structure the DLT pipeline’s code to facilitate unit

and integration testing

	■ How to perform unit testing of individual transformations of your

DLT pipeline

	■ How to perform integration testing by executing the full DLT pipeline

	■ How to promote the DLT assets between stages

	■ How to put everything together to form a CI/CD pipeline (with Azure DevOps as an example)

22E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://en.wikipedia.org/wiki/DevOps

APPLYING DEVOPS PRACTICES TO DLT: THE BIG PICTURE

The DevOps practices are aimed at shortening the software development life

cycle (SDLC) providing the high quality at the same time. Typically they include

these steps:

	■ Version control of the source code and infrastructure

	■ Code reviews

	■ Separation of environments (development/staging/production)

	■ Automated testing of individual software components and the whole

product with the unit and integration tests

	■ Continuous integration (testing) and continuous deployment of

changes (CI/CD)

All these practices can be applied to Delta Live Tables pipelines as well:

Figure: DLT development workflow

23E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

To achieve this we use the following features of Databricks product portfolio:

	■ Databricks Repos provide an interface to different Git services, so we

can use them for code versioning, integration with CI/CD systems, and

promotion of the code between environments

	■ Databricks CLI (or Databricks REST API) to implement CI/CD pipelines

	■ Databricks Terraform Provider for deployment of all necessary

infrastructure and keeping it up to date

The recommended high-level development workflow of a DLT pipeline

is as following:

3.	CI/CD system reacts to the commit and starts the build pipeline (CI part of CI/

CD) that will update a staging Databricks Repo with the changes, and trigger

execution of unit tests.

a.	Optionally, the integration tests could be executed as well, although

in some cases this could be done only for some branches, or as a

separate pipeline.

4.	If all tests are successful and code is reviewed, the changes are merged into

the main (or a dedicated branch) of the Git repository.

5.	Merging of changes into a specific branch (for example, releases) may trigger a

release pipeline (CD part of CI/CD) that will update the Databricks Repo in the

production environment, so code changes will take effect when pipeline runs

next time.

As illustration for the rest of the chapter we’ll use a very simple DLT pipeline

consisting just of two tables, illustrating typical Bronze/Silver layers of a typical

lakehouse architecture. Complete source code together with deployment

instructions is available on GitHub.

1.	 A developer is developing the DLT code in their own checkout of a Git

repository using a separate Git branch for changes.

2.	When code is ready and tested, code is committed to Git and a pull request

is created.

Figure: Example DLT pipeline

Note: DLT provides both SQL and Python APIs, in most of the chapter we focus

on Python implementation, although we can apply most of the best practices

also for SQL-based pipelines.

24E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/repos/index.html
https://docs.databricks.com/dev-tools/cli/index.html
https://docs.databricks.com/dev-tools/api/latest/index.html
https://registry.terraform.io/providers/databricks/databricks/latest/docs
https://www.databricks.com/glossary/medallion-architecture
https://www.databricks.com/glossary/data-lakehouse
https://github.com/alexott/dlt-files-in-repos-demo

DEVELOPMENT CYCLE WITH DELTA LIVE TABLES

When developing with Delta Live Tables, typical development process looks

as follows:

1.	 Code is written in the notebook(s).

2.	When another piece of code is ready, a user switches to DLT UI and starts

the pipeline. (To make this process faster it’s recommended to run the

pipeline in the Development mode, so you don’t need to wait for resources

again and again).

3.	When a pipeline is finished or failed because of the errors, the user

analyzes results, and adds/modifies the code, repeating the process.

4.	When code is ready, it’s committed.

For complex pipelines, such dev cycle could have a significant overhead because

the pipeline’s startup could be relatively long for complex pipelines with dozens

of tables/views and when there are many libraries attached. For users it would be

easier to get very fast feedback by evaluating the individual transformations and

testing them with sample data on interactive clusters.

STRUCTURING THE DLT PIPELINE 'S CODE

To be able to evaluate individual functions and make them testable it’s very

important to have correct code structure. Usual approach is to define all

data transformations as individual functions receiving and returning Spark

DataFrames, and call these functions from DLT pipeline functions that will form

the DLT execution graph. The best way to achieve this is to use files in repos

functionality that allows to expose Python files as normal Python modules that

could be imported into Databricks notebooks or other Python code. DLT natively

supports files in repos that allows importing Python files as Python modules

(please note, that when using files in repos, the two entries are added to the

Python’s sys.path — one for repo root, and one for the current directory of the

caller notebook). With this, we can start to write our code as a separate Python

file located in the dedicated folder under the repo root that will be imported as a

Python module:

Figure: Source code for a Python package

25E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/delta-live-tables/updates.html#development-and-production-modes
https://docs.databricks.com/repos/work-with-notebooks-other-files.html#work-with-python-and-r-modules
https://docs.databricks.com/files/workspace-modules.html

And the code from this Python package could be used inside the DLT

pipeline code:

Note, that function in this particular DLT code snippet is very small — all it’s doing

is just reading data from the upstream table, and applying our transformation

defined in the Python module. With this approach we can make DLT code simpler

to understand and easier to test locally or using a separate notebook attached

to an interactive cluster. Splitting the transformation logic into a separate Python

module allows us to interactively test transformations from notebooks, write unit

tests for these transformations and also test the whole pipeline (we’ll talk about

testing in the next sections).

The final layout of the Databricks Repo, with unit and integration tests, may look

as following:

This code structure is especially important for bigger projects that may consist

of the multiple DLT pipelines sharing the common transformations.

Figure: Using functions from the Python package in the DLT code

Figure: Recommended code layout in Databricks Repo

26E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

IMPLEMENTING UNIT TESTS

As mentioned above, splitting transformations into a separate Python module

allows us easier write unit tests that will check behavior of the individual

functions. We have a choice of how we can implement these unit tests:

	■ We can define them as Python files that could be executed locally, for

example, using pytest. This approach has following advantages:

	■ We can develop and test these transformations using the IDE, and

for example, sync the local code with Databricks repo using the

Databricks extension for Visual Studio Code or dbx sync command if

you use another IDE

	■ Such tests could be executed inside the CI/CD build pipeline without

need to use Databricks resources (although it may depend if some

Databricks-specific functionality is used or the code could be

executed with PySpark)

	■ We have access to more development related tools — static code

and code coverage analysis, code refactoring tools, interactive

debugging, etc.

	■ We can even package our Python code as a library, and attach to

multiple projects

	■ We can define them in the notebooks — with this approach:

	■ We can get feedback faster as we always can run sample code and

tests interactively

	■ We can use additional tools like Nutter to trigger execution of

notebooks from the CI/CD build pipeline (or from the local machine)

and collect results for reporting

The demo repository contains a sample code for both of these approaches — for

local execution of the tests, and executing tests as notebooks. The CI pipeline

shows both approaches.

Please note that both of these approaches are applicable only to the Python

code — if you’re implementing your DLT pipelines using SQL, then you need to

follow the approach described in the next section.

IMPLEMENTING INTEGRATION TESTS

While unit tests give us assurance that individual transformations are working

as they should, we still need to make sure that the whole pipeline also works.

Usually this is implemented as an integration test that runs the whole pipeline,

but usually it’s executed on the smaller amount of data, and we need to validate

execution results. With Delta Live Tables, there are multiple ways to implement

integration tests:

	■ Implement it as a Databricks Workflow with multiple tasks — similarly what

is typically done for non-DLT code

	■ Use DLT expectations to check pipeline’s results

IMPLEMENTING INTEGRATION TESTS WITH
DATABRICKS WORKFLOWS

In this case we can implement integration tests with Databricks Workflows with

multiple tasks (we can even pass data, such as, data location, etc. between tasks

using task values). Typically such a workflow consists of the following tasks:

	■ Setup data for DLT pipeline

	■ Execute pipeline on this data

	■ Perform validation of produced results.

27E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/dev-tools/vscode-ext.html
https://docs.databricks.com/dev-tools/dbx-sync.html
https://github.com/microsoft/nutter
 https://github.com/alexott/dlt-files-in-repos-demo/tree/main/tests/unit-local
https://github.com/alexott/dlt-files-in-repos-demo/tree/main/tests/unit-notebooks
https://github.com/alexott/dlt-files-in-repos-demo/blob/main/azure-pipelines.yml
https://www.databricks.com/blog/2022/08/02/sharing-context-between-tasks-in-databricks-workflows.html

Figure: Implementing integration test with Databricks Workflows

The main drawback of this approach is that it requires writing quite a significant

amount of the auxiliary code for setup and validation tasks, plus it requires

additional compute resources to execute the setup and validation tasks.

USE DLT EXPECTATIONS TO IMPLEMENT
INTEGRATION TESTS

We can implement integration tests for DLT by expanding the DLT pipeline with

additional DLT tables that will apply DLT expectations to data using the fail

operator to fail the pipeline if results don’t match to provided expectations.

It’s very easy to implement - just create a separate DLT pipeline that will

include additional notebook(s) that define DLT tables with expectations

attached to them.

For example, to check that silver table includes only allowed data in the type

column we can add following DLT table and attach expectations to it:

Resulting DLT pipeline for integration test may look as following (we have two

additional tables in the execution graph that check that data is valid):

This is the recommended approach to performing integration testing of DLT

pipelines. With this approach, we don’t need any additional compute resources

- everything is executed in the same DLT pipeline, so get cluster reuse, all data is

logged into the DLT pipeline’s event log that we can use for reporting, etc.

Please refer to DLT documentation for more examples of using DLT expectations

for advanced validations, such as, checking uniqueness of rows, checking

presence of specific rows in the results, etc. We can also build libraries of

DLT expectations as shared Python modules for reuse between different

DLT pipelines.

Figure: Implementing integration tests using DLT expectations

1
2

3
4

@dlt.table(comment="Check type")
@dlt.expect_all_or_fail({"valid type": "type in ('link', 'redlink')",
 "type is not null": "type is not null"})
def filtered_type_check():
 return dlt.read("clickstream_filtered").select("type")

28E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/workflows/delta-live-tables/delta-live-tables-expectations.html
https://docs.databricks.com/delta-live-tables/expectations.html#fail-on-invalid-records
https://docs.databricks.com/delta-live-tables/expectations.html#fail-on-invalid-records
https://docs.databricks.com/delta-live-tables/observability.html
https://docs.databricks.com/delta-live-tables/expectations.html#perform-advanced-validation-with-delta-live-tables-expectations
https://docs.databricks.com/delta-live-tables/expectations.html#make-expectations-portable-and-reusable
https://docs.databricks.com/delta-live-tables/expectations.html#make-expectations-portable-and-reusable

PROMOTING THE DLT ASSETS BETWEEN ENVIRONMENTS

When we’re talking about promotion of changes in the context of DLT, we’re

talking about multiple assets:

	■ Source code that defines transformations in the pipeline

	■ Settings for a specific Delta Live Tables pipeline

The simplest way to promote the code is to use Databricks Repos to work with

the code stored in the Git repository. Besides keeping your code versioned,

Databricks Repos allows you to easily propagate the code changes to other

environments using the Repos REST API or Databricks CLI.

From the beginning, DLT separates code from the pipeline configuration to make

it easier to promote between stages by allowing to specify the schemas, data

locations, etc. So we can define a separate DLT configuration for each stage that

will use the same code, while allowing you to store data in different locations, use

different cluster sizes, etc.

To define pipeline settings we can use Delta Live Tables REST API or Databricks

CLI’s pipelines command, but it becomes difficult in case you need to use

instance pools, cluster policies, or other dependencies. In this case the more

flexible alternative is Databricks Terraform Provider’s databricks_pipeline

resource that allows easier handling of dependencies to other resources, and we

can use Terraform modules to modularize the Terraform code to make it reusable.

The provided code repository contains examples of the Terraform code for

deploying the DLT pipelines into the multiple environments.

PUTTING EVERY THING TOGETHER TO FORM
A CI/CD PIPELINE

After we implemented all the individual parts, it’s relatively easy to implement

a CI/CD pipeline. GitHub repository includes a build pipeline for Azure DevOps

(other systems could be supported as well — the differences are usually in the

file structure). This pipeline has two stages to show ability to execute different

sets of tests depending on the specific event:

	■ onPush is executed on push to any Git branch except releases branch and

version tags. This stage only runs and reports unit tests results (both local

and notebooks).

	■ onRelease is executed only on commits to the releases branch, and in

addition to the unit tests it will execute a DLT pipeline with integration test.

Figure: Structure of Azure DevOps build pipeline

29E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/repos/index.html
https://docs.databricks.com/dev-tools/api/latest/repos.html#operation/update-repo
https://docs.databricks.com/dev-tools/cli/repos-cli.html
https://docs.databricks.com/delta-live-tables/settings.html
https://docs.databricks.com/delta-live-tables/api-guide.html
https://docs.databricks.com/dev-tools/cli/dlt-cli.html
https://docs.databricks.com/dev-tools/cli/dlt-cli.html
https://registry.terraform.io/providers/databricks/databricks/latest/docs/resources/pipeline
https://registry.terraform.io/providers/databricks/databricks/latest/docs/resources/pipeline
https://github.com/alexott/dlt-files-in-repos-demo/tree/main/terraform/azuredevops
https://github.com/alexott/dlt-files-in-repos-demo/blob/main/azure-pipelines.yml

Except for the execution of the integration test in the onRelease stage, the

structure of both stages is the same — it consists of following steps:

1.	 Checkout the branch with changes

2.	Set up environment — install Poetry which is used for managing Python

environment management, and installation of required dependencies

3.	Update Databricks Repos in the staging environment

4.	Execute local unit tests using the PySpark

5.	Execute the unit tests implemented as Databricks notebooks using Nutter

6.	For releases branch, execute integration tests

7.	 Collect test results and publish them to Azure DevOps

30E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://python-poetry.org/

Results of tests execution are reported back to the Azure DevOps, so we can

track them:

If commits were done to the releases branch and all tests were successful, the

release pipeline could be triggered, updating the production Databricks repo, so

changes in the code will be taken into account on the next run of DLT pipeline.

Try to apply approaches described in this chapter to your Delta Live Table

pipelines! The provided demo repository contains all necessary code together

with setup instructions and Terraform code for deployment of everything to

Azure DevOps.

Figure: Reporting the tests execution results

Figure: Release pipeline to deploy code changes to production DLT pipeline

31E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://github.com/alexott/dlt-files-in-repos-demo/blob/main/azure-pipelines-release.yml
https://github.com/alexott/dlt-files-in-repos-demo

OVERALL CHALLENGES WITH TRADITIONAL
NON- UNIFIED GOVERNANCE

The Unity Catalog Governance Value Levers blog discussed the “why” of the

organizational importance of governance for information security, access control,

usage monitoring, enacting guardrails, and obtaining “single source of truth”

insights from their data assets. These challenges compound as their company

grows and without Databricks UC, traditional governance solutions no longer

adequately meet their needs.

The major challenges discussed included weaker compliance and fractured

data privacy controlled across multiple vendors; uncontrolled and siloed

data and AI swamps; exponentially rising costs; loss of opportunities, revenue,

and collaboration.

Unity Catalog Governance in Action: Monitoring, Reporting and Lineage
by Ari Kaplan and Pearl Ubaru

Databricks Unity Catalog (UC) provides a single unified governance solution for all of a company’s data and AI assets across clouds and data platforms. This chapter

digs deeper into the prior Unity Catalog Governance Value Levers blog to show how the technology itself specifically enables positive business outcomes through

comprehensive data and AI monitoring, reporting, and lineage.

HOW DATABRICKS UNIT Y CATALOG SUPPORTS A UNIFIED
VIEW, MONITORING , AND OBSERVABILIT Y

So, how does this all work from a technical standpoint? UC manages all registered

assets across the Databricks Data Intelligence Platform. These assets can be

anything within BI, DW, data engineering, data streaming, data science, and ML.

This governance model provides access controls, lineage, discovery, monitoring,

auditing, and sharing. It also provides metadata management of files, tables,

ML models, notebooks, and dashboards. UC gives one single view of your entire

end-to-end information, through the Databricks asset catalog, feature store and

model registry, lineage capabilities, and metadata tagging for data classifications,

as discussed below:

32E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/blog/unity-catalog-governance-value-levers
https://www.databricks.com/product/unity-catalog
https://www.databricks.com/blog/unity-catalog-governance-value-levers

Unified view of the entire data estate
	■ Asset catalog: through system tables that contain metadata, you can see

all that is contained in your catalog such as schemas, tables, columns, files,

models, and more. If you are not familiar with volumes within Databricks,

they are used for managing non-tabular datasets. Technically, they are

logical volumes of storage to access files in any format: structured, semi-

structured, and unstructured.

Catalog Explorer lets you discover and govern all your data and ML models

Data sources can be across platforms such as Snowflake and Databricks

	■ Feature Store and Model Registry: define features used by data scientists

within the centralized repository. This is helpful for consistent model

training and inference for your entire AI workflow.

	■ Lineage capabilities: trust in your data is key for your business to take

action in real life. End-to-end transparency into your data is needed for

trust in your reports, models, and insights. UC makes this easy through

lineage capabilities, providing insights on: What are the raw data sources?

Who created it and when? How was data merged and transformed? What

is the traceability from the models back to the datasets they are trained

on? Lineage shows end-to-end from data to model - both table-level and

column-level. You can even query across data sources such as Snowflake

and benefit immediately:

33E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/product/feature-store
https://docs.databricks.com/en/mlflow/model-registry.html
https://docs.databricks.com/en/data-governance/unity-catalog/data-lineage.html

	■ Metadata tagging for data classifications: enrich your data and queries by

providing contextual insights about your data assets. These descriptions

at the column and table level can be manually entered, or automatically

described with GenAI by Databricks Assistant. Below is an example of

descriptions and quantifiable characteristics:

Metadata tagging insights: frequent users, notebooks, queries, joins, billing trends and more

Metadata tagging insights: details on the “features” table

Databricks Assistant uses GenAI to write context-aware descriptions of columns and tables

34E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/blog/announcing-public-preview-ai-generated-documentation-databricks-unity-catalog

Having one unified view results in:

	■ Accelerated innovation: your insights are only as good as your data.

Your analysis is only as good as the data you access. So, streamlining

your data search drives faster and better generation of business insights,

driving innovation.

	■ Cost reduction through centralized asset cataloging: lowers license

costs (just one vendor solution versus needing many vendors),

lowers usage fees, reduces time to market pains, and enables overall

operational efficiencies.

	■ It’s easier to discover and access all data by reducing data sprawl across

several databases, data warehouses, object storage systems, and more.

COMPREHENSIVE DATA AND AI MONITORING AND
REPORTING

Databricks Lakehouse Monitoring allows teams to monitor their entire data

pipelines — from data and features to ML models — without additional tools

and complexity. Powered by Unity Catalog, it lets users uniquely ensure that

their data and AI assets are high quality, accurate and reliable through deep

insight into the lineage of their data and AI assets. The single, unified approach to

monitoring enabled by lakehouse architecture makes it simple to diagnose errors,

perform root cause analysis, and find solutions.

How do you ensure trust in your data, ML models, and AI across your entire

data pipeline in a single view regardless of where the data resides? Databricks

Lakehouse Monitoring is the industry’s only comprehensive solution from data

(regardless of where it resides) to insights. It accelerates the discovery of issues,

helps determine root causes, and ultimately assists in recommending solutions.

UC provides Lakehouse Monitoring capabilities with both democratized

dashboards and granular governance information that can be directly queried

through system tables. The democratization of governance extends operational

oversight and compliance to non-technical people, allowing a broad variety of

teams to monitor all of their pipelines.

Below is a sample dashboard of the results of an ML model including its accuracy

over time:

35E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/product/machine-learning/lakehouse-monitoring

It further shows data integrity of predictions and data drift over time: It’s one thing to intentionally seek out ML model information when you are looking

for answers, but it is a whole other level to get automated proactive alerts on

errors, data drift, model failures, or quality issues. Below is an example alert for a

potential PII (Personal Identifiable Information) data breach:

One more thing — you can assess the impact of issues, do a root cause analysis,

and assess the downstream impact by Databrick’s powerful lineage capabilities

— from table-level to column-level.

System tables: metadata information for lakehouse observability

and ensuring compliance

Example proactive alert of potential unmasked private data

And model performance over time, according to a variety of ML metrics such as

R2, RMSE, and MAPE:

Lakehouse Monitoring dashboards show data and AI assets quality

36E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/resources/demos/tutorials/governance/system-tables

These underlying tables can be queried through SQL or activity dashboards

to provide observability about every asset within the Databricks Intelligence

Platform. Examples include which users have access to which data objects; billing

tables that provide pricing and usage; compute tables that take cluster usage

and warehouse events into consideration; and lineage information between

columns and tables:

	■ Audit tables include information on a wide variety of UC events. UC

captures an audit log of actions performed against the metastore giving

administrators access to details about who accessed a given dataset and

the actions that they performed.

	■ Billing and historical pricing tables will include records for all billable usage

across the entire account; therefore you can view your account’s global

usage from whichever region your workspace is in.

	■ Table lineage and column lineage tables are great because they allow

you to programmatically query lineage data to fuel decision making and

reports. Table lineage records each read-and-write event on a UC table

or path that might include job runs, notebook runs and dashboards

associated with the table. For column lineage, data is captured by reading

the column.

	■ Node types tables capture the currently available node types with their

basic hardware information outlining the node type name, the number

of vCPUs for the instance, and the number of GPUs and memory for the

instance. Also in private preview are node_utilization metrics on how much

usage each node is leveraging.

	■ Query history holds information on all SQL commands, i/o performance,

and number of rows returned.

	■ Clusters table contains the full history of cluster configurations over time

for all-purpose and job clusters.

	■ Predictive optimization tables are great because they optimize your data

layout for peak performance and cost efficiency. The tables track the

operation history of optimized tables by providing the catalog name,

schema name, table name, and operation metrics about compaction

and vacuuming.

From the catalog explorer, here are just a few of the system tables any of which

can be viewed for more details:

37E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/en/administration-guide/account-settings/audit-logs.html

As an example, drilling down on the "key_column_usage" table, you can see

precisely how tables relate to each other via their primary key:

Another example is the "share_recipient_privileges" table, to see who granted

which shares to whom:

38E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

The example dashboard below shows the number of users, tables, ML models,

percent of tables that are monitored or not, dollars spent on Databricks DBUs

over time, and so much more:

What does having a comprehensive data and AI monitoring and
reporting tool result in?

	■ Reduced risk of non-compliance with better monitoring of internal policies

and security breach potential results in safeguarded reputation and

improved data and AI trust from employees and partners.

	■ Improved integrity and trustworthiness of data and AI with "one source of

truth", anomaly detection, and reliability metrics.

Value Levers with Databricks Unity Catalog
If you are looking to learn more about the values Unity Catalog brings to

businesses, the prior Unity Catalog Governance Value Levers blog went

into detail: mitigating risk around compliance; reducing platform complexity

and costs; accelerating innovation; facilitating better internal and external

collaboration; and monetizing the value of data.

CONCLUSION

Governance is key to mitigating risks, ensuring compliance, accelerating

innovation, and reducing costs. Databricks Unity Catalog is unique in the market,

providing a single unified governance solution for all of a company’s data and AI

across clouds and data platforms.

UC Databricks architecture makes governance seamless: a unified view and

discovery of all data assets, one tool for access management, one tool for

auditing for enhanced data and AI security, and ultimately enabling platform-

independent collaboration that unlocks new business values.

Getting started is easy - UC comes enabled by default with Databricks if you are

a new customer! Also if you are on premium or enterprise workspaces, there are

no additional costs.

Governance dashboard showing billing trends, usage, activity and more

39E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/blog/unity-catalog-governance-value-levers

Scalable Spark Structured Streaming for
REST API Destinations
by Art Rask and Jay Palaniappan

Spark Structured Streaming is the widely-used open source engine at the

foundation of data streaming on the Data Intelligence Platform. It can elegantly

handle diverse logical processing at volumes ranging from small-scale ETL to

the largest Internet services. This power has led to adoption in many use cases

across industries.

Another strength of Structured Streaming is its ability to handle a variety of

both sources and sinks (or destinations). In addition to numerous sink types

supported natively (incl. Delta, AWS S3, Google GCS, Azure ADLS, Kafka topics,

Kinesis streams, and more), Structured Streaming supports a specialized sink

that has the ability to perform arbitrary logic on the output of a streaming query:

the foreachBatch extension method. With foreachBatch, any output target

addressable through Python or Scala code can be the destination for a stream.

In this chapter we will share best practice guidance we’ve given customers who

have asked how they can scalably turn streaming data into calls against a REST

API. Routing an incoming stream of data to calls on a REST API is a requirement

seen in many integration and data engineering scenarios.

Some practical examples that we often come across are in Operational and

Security Analytics workloads. Customers want to ingest and enrich real-time

streaming data from sources like kafka, eventhub, and Kinesis and publish it into

operational search engines like Elasticsearch, Opensearch, and Splunk. A key

advantage of Spark Streaming is that it allows us to enrich, perform data quality

checks, and aggregate (if needed) before data is streamed out into the search

engines. This provides customers a high quality real-time data pipeline for

operational and security analytics.

The most basic representation of this scenario is shown in Figure 1. Here we have

an incoming stream of data - it could be a Kafka topic, AWS Kinesis, Azure Event

Hub, or any other streaming query source. As messages flow off the stream we

need to make calls to a REST API with some or all of the message data.

In a greenfield environment, there are many technical options to implement

this. Our focus here is on teams that already have streaming pipelines in Spark

for preparing data for machine learning, data warehousing, or other analytics-

focused uses. In this case, the team will already have skills, tooling and DevOps

processes for Spark. Assume the team now has a requirement to route some

data to REST API calls. If they wish to leverage existing skills or avoid re-working

their tool chains, they can use Structured Streaming to get it done.

Figure 1

40E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/product/data-streaming
https://docs.databricks.com/structured-streaming/foreach.html

KEY IMPLEMENTATION TECHNIQUES, AND SOME CODE

A basic code sample is included as Exhibit 1. Before looking at it in detail, we will

call out some key techniques for effective implementation.

For a start, you will read the incoming stream as you would any other streaming

job. All the interesting parts here are on the output side of the stream. If your

data must be transformed in flight before posting to the REST API, do that as

you would in any other case. This code snippet reads from a Delta table; as

mentioned, there are many other possible sources.

For directing streamed data to the REST API, take the following approach:

1.	 Use the foreachBatch extension method to pass incoming

micro-batches to a handler method (callRestAPIBatch) which will

handle calls to the REST API.

2.	Whenever possible, group multiple rows from the input on each outgoing

REST API call. In relative terms, making the API call over HTTP will be a

slow part of the process. Your ability to reach high throughput will be

dramatically improved if you include multiple messages/records on the

body of each API call. Of course, what you can do will be dictated by the

target REST API. Some APIs allow a POST body to include many items up

to a maximum body size in bytes. Some APIs have a max count of items on

the POST body. Determine the max you can fit on a single call for the target

API. In your method invoked by foreachBatch, you will have a prep step to

transform the micro-batch dataframe into a pre-batched dataframe where

each row has the grouped records for one call to the API. This step is also a

chance for any last transform of the records to the format expected by the

target API. An example is shown in the code sample in Exhibit 1 with the call

to a helper function named preBatchRecordsForRestCall.

3.	In most cases, to achieve a desired level of throughput, you will want to

make calls to the API from parallel tasks. You can control the degree of

parallelism by calling repartition on the dataframe of pre-batched data.

Call repartition with the number of parallel tasks you want calling the API.

This is actually just one line of code.

1
2
3

dfSource = (spark.readStream
 .format("delta")
 .table("samples.nyctaxi.trips"))

1
2
3

streamHandle = (dfSource.writeStream
 .foreachBatch(callRestAPIBatch)
 .start())

1
2

Repartition pre-batched df for parallelism of API calls
new_df = pre_batched_df.repartition(8)

41E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

It is worth mentioning (or admitting) that using repartition here is

a bit of an anti-pattern. Explicit repartitioning with large datasets can

have performance implications, especially if it causes a shuffle between

nodes on the cluster. In most cases of calling a REST API, the data size of

any micro-batch is not massive. So, in practical terms, this technique is

unlikely to cause a problem. And, it has a big positive effect on throughput

to the API.

4.	Execute a dataframe transformation that calls a nested function dedicated

to making a single call to the REST API. The input to this function will be

one row of pre-batched data. In the sample, the payload column has the

data to include on a single call. Call a dataframe action method to invoke

execution of the transformation.

The six elements above should prepare your code for sending streaming data to

a REST API, with the ability to scale for throughput and to handle error conditions

cleanly. The sample code in Exhibit 1 is an example implementation. Each point

stated above is reflected in the full example.

5.	Inside the nested function which will make one API call, use your libraries

of choice to issue an HTTP POST against the REST API. This is commonly

done with the Requests library but any library suitable for making the

call can be considered. See the callRestApiOnce method in Exhibit 1

for an example.

6.	Handle potential errors from the REST API call by using a try..except

block or checking the HTTP response code. If the call is unsuccessful,

the overall job can be failed by throwing an exception (for job retry or

troubleshooting) or individual records can be diverted to a dead letter

queue for remediation or later retry.

1
2
3

submitted_df = new_df.withColumn("RestAPIResponseCode",\
 callRestApiOnce(new_df["payload"])).\
 collect()

1
2
3

if not (response.status_code==200 or response.status_code==201) :
 raise Exception("Response status : {} .Response message : {}".\
 format(str(response.status_code),response.text))

42E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://pypi.org/project/requests/

1
2
3
4
5

6
7
8
9
10
11
12
13
14
15
16

17
18

19
20
21
22
23
24

24
25
26
27
28
29
30

31

from pyspark.sql.functions import *
from pyspark.sql.window import Window
import math
import requests
from requests.adapters import HTTPAdapter

def preBatchRecordsForRestCall(microBatchDf, batchSize):
 batch_count = math.ceil(microBatchDf.count() / batchSize)
 microBatchDf = microBatchDf.withColumn("content", to_json(struct(col("*"))))
 microBatchDf = microBatchDf.withColumn("row_number",\
 row_number().over(Window().
orderBy(lit('A'))))
 microBatchDf = microBatchDf.withColumn("batch_id", col("row_number") % batch_
count)
 return microBatchDf.groupBy("batch_id").\
 agg(concat_ws(",|", collect_
list("content")).\
 alias("payload"))

def callRestAPIBatch(df, batchId):
 restapi_uri = "<REST API URL>"

 @udf("string")
 def callRestApiOnce(x):
 session = requests.Session()
 adapter = HTTPAdapter(max_retries=3)
 session.mount('http://', adapter)
 session.mount('https://', adapter)

 #this code sample calls an unauthenticated REST endpoint; add headers
necessary for auth
 headers = {'Authorization':'abcd'}
 response = session.post(restapi_uri, headers=headers, data=x, verify=False)
 if not (response.status_code==200 or response.status_code==201) :
 raise Exception("Response status : {} .Response message : {}".\
 format(str(response.status_code),response.text))

 return str(response.status_code)

32
33
34
35
36

37
38

39
40
41

42
43
44

45
46
47
48

 ### Call helper method to transform df to pre-batched df with one row per REST
API call
 ### The POST body size and formatting is dictated by the target API; this is an
example
 pre_batched_df = preBatchRecordsForRestCall(df, 10)

 ### Repartition pre-batched df for target parallelism of API calls
 new_df = pre_batched_df.repartition(8)

 ### Invoke helper method to call REST API once per row in the pre-batched df
 submitted_df = new_df.withColumn("RestAPIResponseCode",\
 callRestApiOnce(new_df["payload"])).collect()

dfSource = (spark.readStream
 .format("delta")
 .table("samples.nyctaxi.trips"))

streamHandle = (dfSource.writeStream
 .foreachBatch(callRestAPIBatch)
 .trigger(availableNow=True)
 .start())

Exhibit 1

43E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

DESIGN AND OPERATIONAL CONSIDERATIONS

Exactly Once vs At Least Once Guarantees
As a general rule in Structured Streaming, using foreachBatch only provides at-

least-once delivery guarantees. This is in contrast to the exactly-once delivery

guarantee provided when writing to sinks like a Delta table or file sinks. Consider,

for example, a case where 1,000 records arrive on a micro-batch and your code

in foreachBatch begins calling the REST API with the batch. In a hypothetical

failure scenario, let’s say that 900 calls succeed before an error occurs and fails

the job. When the stream restarts, processing will resume by re-processing the

failed batch. Without additional logic in your code, the 900 already-processed

calls will be repeated. It is important that you determine in your design whether

this is acceptable, or whether you need to take additional steps to protect

against duplicate processing.

The general rule when using foreachBatch is that your target sink (REST API in this

case) should be idempotent or that you must do additional tracking to account

for multiple calls with the same data.

Estimating Cluster Core Count for a Target Throughput
Given these techniques to call a REST API with streaming data, it will quickly

become necessary to estimate how many parallel executors/tasks are necessary

to achieve your required throughput. And you will need to select a cluster size.

The following table shows an example calculation for estimating the number of

worker cores to provision in the cluster that will run the stream.

Line H in the table shows the estimated number of worker cores necessary to

sustain the target throughput. In the example shown here, you could provision a

cluster with two 16-core workers or 4 8-core workers, for example. For this type

of workload, fewer nodes with more cores per node is preferred.

Line H is also the number that would be put in the repartition call in foreachBatch,

as described in item 3 above.

Line G is a rule of thumb to account for other activity on the cluster. Even if your

stream is the only job on the cluster, it will not be calling the API 100% of the time.

Some time will be spent reading data from the source stream, for example. The

value shown here is a good starting point for this factor - you may be able to fine

tune it based on observations of your workload.

Obviously, this calculation only provides an estimated starting point for tuning

the size of your cluster. We recommend you start from here and adjust up or

down to balance cost and throughput.

44E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/structured-streaming/delta-lake.html#delta-table-as-a-sink

OTHER FACTORS TO CONSIDER

There are other factors you may need to plan for in your deployment. These are

outside the scope of this post, but you will need to consider them as part of

implementation. Among these are:

1.	 Authentication requirements of the target API: It is likely that the REST

API will require authentication. This is typically done by adding required

headers in your code before making the HTTP POST.

2.	Potential rate limiting: The target REST API may implement rate limiting

which will place a cap on the number of calls you can make to it per

second or minute. You will need to ensure you can meet throughout

targets within this limit. You’ll also want to be ready to handle throttling

errors that may occur if the limit is exceeded.

3.	Network path required from worker subnet to target API: Obviously, the

worker nodes in the host Spark cluster will need to make HTTP calls to

the REST API endpoint. You’ll need to use the available cloud networking

options to configure your environment appropriately.

4.	If you control the implementation of the target REST API (e.g., an internal

custom service), be sure the design of that service is ready for the load

and throughput generated by the streaming workload.

MEASURED THROUGHPUT TO A MOCKED API WITH
DIFFERENT NUMBERS OF PARALLEL TASKS

To provide representative data of scaling REST API calls as described here, we

ran tests using code very similar to Example 1 against a mocked up REST API that

persisted data in a log.

Results from the test are shown in Table 1. These metrics confirm near-linear

scaling as the task count was increased (by changing the partition count

using repartition). All tests were run on the same cluster with a single 16-core

worker node.

Table 1

45E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

REPRESENTATIVE ALL UP PIPELINE DESIGNS

1.	 Routing some records in a streaming pipeline to REST API (in addition to

persistent sinks)

This pattern applies in scenarios where a Spark-based data pipeline

already exists for serving analytics or ML use cases. If a requirement

emerges to post cleansed or aggregated data to a REST API with low

latency, the technique described here can be used.

2.	Simple Autoloader to REST API job

This pattern is an example of leveraging the diverse range of sources

supported by Structured Streaming. Databricks makes it simple to

consume incoming near real-time data - for example using Autoloader to

ingest files arriving in cloud storage. Where Databricks is already used for

other use cases, this is an easy way to route new streaming sources to a

REST API.

SUMMARY

We have shown here how structured streaming can be used to send streamed

data to an arbitrary endpoint - in this case, via HTTP POST to a REST API. This

opens up many possibilities for flexible integration with analytics data pipelines.

However, this is really just one illustration of the power of foreachBatch in Spark

Structured Streaming.

The foreachBatch sink provides the ability to address many endpoint types that

are not among the native sinks. Besides REST APIs, these can include databases

via JDBC, almost any supported Spark connector, or other cloud services that are

addressable via a helper library or API. One example of the latter is pushing data

to certain AWS services using the boto3 library.

This flexibility and scalability enables Structured Streaming to underpin a vast

range of real-time solutions across industries.

If you are a Databricks customer, simply follow the getting started tutorial

to familiarize yourself with Structured Streaming. If you are not an existing

Databricks customer, sign up for a free trial.

46E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/getting-started/streaming.html
https://www.databricks.com/try-databricks

A Data Engineer’s Guide to Optimized
Streaming With Protobuf and Delta
Live Tables
by Craig Lukasik

This article describes an example use case where events from multiple games

stream through Kafka and terminate in Delta tables. The example illustrates how

to use Delta Live Tables (DLT) to:

1.	 Stream from Kafka into a Bronze Delta table.

2.	Consume streaming Protobuf messages with schemas managed by the

Confluent Schema Registry, handling schema evolution gracefully.

3.	Demultiplex (demux) messages into multiple game-specific, append-only

Silver Streaming Tables. Demux indicates that a single stream is split or

fanned out into separate streams.

4.	Create Materialized Views to recalculate aggregate values periodically.

A high-level view of the system architecture is illustrated below.

First, let’s look at the Delta Live Tables code for the example and the related

pipeline DAG so that we can get a glimpse of the simplicity and power of the

DLT framework.

47E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://delta.io/
https://www.databricks.com/product/delta-live-tables
https://kafka.apache.org/
https://docs.confluent.io/platform/current/schema-registry/index.html
https://www.techopedia.com/definition/6813/demultiplexer-dmux
https://docs.databricks.com/en/delta-live-tables/index.html#what-are-delta-live-tables-datasets
https://docs.databricks.com/en/delta-live-tables/index.html#what-are-delta-live-tables-datasets

On the left, we see the DLT Python code. On the right, we see the view and the

tables created by the code. The bottom cell of the notebook on the left operates

on a list of games (GAMES_ARRAY) to dynamically generate the fourteen target

tables we see in the DAG.

Before we go deeper into the example code, let’s take a step back and review

streaming use cases and some streaming payload format options.

STREAMING OVERVIEW

Skip this section if you’re familiar with streaming use cases, protobuf,

the schema registry, and Delta Live Tables. In this article, we’ll dive into a range

of exciting topics.

	■ Common streaming use cases: Uncover the diverse streaming data

applications in today’s tech landscape.

	■ Protocol buffers (Protobuf): Learn why this fast and compact serialization

format is a game-changer for data handling.

	■ Delta Live Tables (DLT): Discover how DLT pipelines offer a rich, feature-

packed platform for your ETL (Extract, Transform, Load) needs.

	■ Building a DLT pipeline: A step-by-step guide on creating a DLT pipeline

that seamlessly consumes Protobuf values from an Apache Kafka stream.

	■ Utilizing the Confluent Schema Registry: Understand how this tool is

crucial for decoding binary message payloads effectively.

	■ Schema evolution in DLT pipelines: Navigate the complexities of schema

evolution within the DLT pipeline framework when streaming protobuf

messages with evolving schema.

COMMON STREAMING USE CASES

The Databricks Data Intelligence Platform is a comprehensive data-to-AI

enterprise solution that combines data engineers, analysts, and data scientists

on a single platform. Streaming workloads can power near real-time prescriptive

and predictive analytics and automatically retrain Machine Learning (ML) models

using Databricks built-in MLOps support. The models can be exposed as

scalable, serverless REST endpoints, all within the Databricks platform.

The data comprising these streaming workloads may originate from various

use cases:

Data in these scenarios is typically streamed through open source messaging

systems, which manage the data transfer from producers to consumers.

Apache Kafka stands out as a popular choice for handling such payloads.

Confluent Kafka and AWS MSK provide robust Kafka solutions for those seeking

managed services.

STR E AM I N G DATA U S E CAS E

IoT sensors on manufacturing floor equipment
Generating predictive maintenance
alerts and preemptive part ordering

Set-top box telemetry
Detecting network instability and
dispatching service crews

Player metrics in a game
Calculating leader-board metrics and
detecting cheat

48E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://developers.google.com/protocol-buffers
https://www.databricks.com/product/delta-live-tables
https://en.wikipedia.org/wiki/Extract,_transform,_load
https://docs.confluent.io/platform/current/schema-registry/index.html
https://www.databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html
https://www.databricks.com/product/data-intelligence-platform
https://www.databricks.com/glossary/predictive-analytics
https://www.databricks.com/blog/2022/06/22/architecting-mlops-on-the-lakehouse.html
https://docs.databricks.com/mlflow/serverless-real-time-inference.html
https://docs.databricks.com/structured-streaming/kafka.html

OPTIMIZING THE STREAMING PAYLOAD FORMAT

Databricks provides capabilities that help optimize the AI journey by unifying

Business Analysis, Data Science, and Data Analysis activities in a single, governed

platform. In your quest to optimize the end-to-end technology stack, a key

focus is the serialization format of the message payload. This element is crucial

for efficiency and performance. We’ll specifically explore an optimized format

developed by Google, known as protocol buffers (or "protobuf"), to understand

how it enhances the technology stack.

WHAT MAKES PROTOBUF AN OPTIMIZED
SERIALIZATION FORMAT?

Google enumerates the advantages of protocol buffers, including compact data

storage, fast parsing, availability in many programming languages, and optimized

functionality through automatically generated classes.

A key aspect of optimization usually involves using pre-compiled classes in

the consumer and producer programs that a developer typically writes. In a

nutshell, consumer and producer programs that leverage protobuf are "aware" of

a message schema, and the binary payload of a protobuf message benefits from

primitive data types and positioning within the binary message, removing the

need for field markers or delimiters.

WHY IS PROTOBUF USUALLY PAINFUL TO WORK WITH?

Programs that leverage protobuf must work with classes or modules compiled

using protoc (the protobuf compiler). The protoc compiler compiles those

definitions into classes in various languages, including Java and Python. To learn

more about how protocol buffers work, go here.

DATABRICKS MAKES WORKING WITH PROTOBUF EASY

Starting in Databricks Runtime 12.1, Databricks provides native support for

serialization and deserialization between Apache Spark struct.... Protobuf

support is implemented as an Apache Spark DataFrame transformation and

can be used with Structured Streaming or for batch operations. It optionally

integrates with the Confluent Schema Registry (a Databricks-exclusive feature).

Databricks makes it easy to work with protobuf because it handles the protobuf

compilation under the hood for the developer. For instance, the data pipeline

developer does not have to worry about installing protoc or using it to compile

protocol definitions into Python classes.

EXPLORING PAYLOAD FORMATS FOR STREAMING
IOT DATA

Before we proceed, it is worth mentioning that JSON or Avro may be suitable

alternatives for streaming payloads. These formats offer benefits that, for some

use cases, may outweigh protobuf. Let’s quickly review these formats.

JSON

JSON is an excellent format for development because it is primarily human-

readable. The other formats we’ll explore are binary formats, which require tools

to inspect the underlying data values. Unlike Avro and protobuf, however, the

JSON document is stored as a large string (potentially compressed), meaning

more bytes may be used than a value represents. Consider the short int value of

8. A short int requires two bytes. In JSON, you may have a document that looks

like the following, and it will require several bytes (~30) for the associated key,

quotes, etc.

49E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/glossary/what-is-unified-ai
https://en.wikipedia.org/wiki/Serialization
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers/docs/overview
https://github.com/protocolbuffers/protobuf#protocol-compiler-installation
https://developers.google.com/protocol-buffers/docs/overview#work
https://docs.databricks.com/structured-streaming/protocol-buffers.html
https://docs.databricks.com/structured-streaming/protocol-buffers.html
https://spark.apache.org/docs/2.1.0/sql-programming-guide.html#datasets-and-dataframes
https://www.databricks.com/spark/getting-started-with-apache-spark/streaming
https://docs.confluent.io/platform/current/schema-registry/index.html

When we consider protobuf, we expect 2 bytes plus a few more for the overhead

related to the positioning metadata.

JSON SUPPORT IN DATABRICKS

On the positive side, JSON documents have rich benefits when used with

Databricks. Databricks Autoloader can easily transform JSON to a structured

DataFrame while also providing built-in support for:

	■ Schema inference - when reading JSON into a DataFrame, you can supply

a schema so that the target DataFrame or Delta table has the desired

schema. Or you can let the engine infer the schema. Alternatively, schema

hints can be supplied if you want a balance of those features.

	■ Schema evolution - Autoloader provides options for how a workload

should adapt to changes in the schema of incoming files.

Consuming and processing JSON in Databricks is simple. To create a Spark

DataFrame from JSON files can be as simple as this:

AVRO

Avro is an attractive serialization format because it is compact, encompasses

schema information in the files themselves, and has built-in database support

in Databricks that includes schema registry integration. This tutorial,

co-authored by Databricks’ Angela Chu, walks you through an example that

leverages Confluent’s Kafka and Schema Registry.

To explore an Avro-based dataset, it is as simple as working with JSON:

This datageeks.com article compares Avro and protobuf. It is worth a read if you

are on the fence between Avro and protobuf. It describes protobuf as the "fastest

amongst all.", so if speed outweighs other considerations, such as JSON and

Avro’s greater simplicity, protobuf may be the best choice for your use case.

EXAMPLE DEMUX PIPELINE

The source code for the end-to-end example is located on GitHub. The example

includes a simulator (Producer), a notebook to install the Delta Live Tables

pipeline (Install_DLT_Pipeline), and a Python notebook to process the data that

is streaming through Kafka (DLT).

1
2
3

{
 "my_short": 8
}

1 df = spark.read.format("avro").load("example.avro")

1 df = spark.read.format("json").load("example.json")

50E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/ingestion/auto-loader/index.html
https://docs.databricks.com/ingestion/auto-loader/schema.html#syntax-for-schema-inference-and-evolution
https://docs.databricks.com/ingestion/auto-loader/schema.html#override-schema-inference-with-schema-hints
https://docs.databricks.com/ingestion/auto-loader/schema.html#how-does-auto-loader-schema-evolution-work
https://docs.databricks.com/structured-streaming/avro-dataframe.html
https://docs.databricks.com/structured-streaming/avro-dataframe.html
https://www.confluent.io/blog/consume-avro-data-from-kafka-topics-and-secured-schema-registry-with-databricks-confluent-cloud-on-azure/
https://dataforgeeks.com/data-serialisation-avro-vs-protocol-buffers/2015/
https://github.com/craig-db/protobuf-dlt-schema-evolution
https://github.com/craig-db/protobuf-dlt-schema-evolution/blob/main/Producer.py
https://github.com/craig-db/protobuf-dlt-schema-evolution/blob/main/Install_DLT_Pipeline.py
https://github.com/craig-db/protobuf-dlt-schema-evolution/blob/main/DLT.py

SCENARIO

Imagine a scenario where a video gaming company is streaming events from

game consoles and phone-based games for a number of the games in its

portfolio. Imagine the game event messages have a single schema that evolves

(i.e., new fields are periodically added). Lastly, imagine that analysts want the data

for each game to land in its own Delta Lake table. Some analysts and BI tools

need pre-aggregated data, too.

Using DLT, our pipeline will create 1+2N tables:

	■ One table for the raw data (stored in the Bronze view).

	■ One Silver Streaming Table for each of the N games, with events streaming

through the Bronze table.

	■ Each game will also have a Gold Delta table with aggregates based on the

associated Silver table.

CODE WALKTHROUGH

BRONZE TABLE DEFINITION

We’ll define the Bronze table (bronze_events) as a DLT view by using the

@dlt.view annotation

The repo includes the source code that constructs values for kafka_options.

These details are needed so the streaming Delta Live Table can consume

messages from the Kafka topic and retrieve the schema from the Confluent

Schema registry (via config values in schema_registry_options). This line of code

is what manages the deserialization of the protobuf messages:

1
2

3
4
5
6
7
8
9
10
11
12

import pyspark.sql.functions as F
from pyspark.sql.protobuf.functions import from_protobuf

@dlt.view
def bronze_events():
 return (
 spark.readStream.format("kafka")
 .options(**kafka_options)
 .load()
 .withColumn('decoded', from_protobuf(F.col("value"), options = schema_registry_
options))
 .selectExpr("decoded.*")
)

1
2

.withColumn('decoded', from_protobuf(F.col("value"), options = schema_registry_
options))

51E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/en/delta/index.html
https://docs.databricks.com/en/delta-live-tables/index.html#views

The simplicity of transforming a DataFrame with protobuf payload is thanks to

this function: from_protobuf (available in Databricks Runtime 12.1 and later). In

this article, we don’t cover to_protobuf, but the ease of use is the same. The

schema_registry_options are used by the function to look up the schema from

the Confluent Schema Registry.

Delta Live Tables is a declarative ETL framework that simplifies the development

of data pipelines. So, suppose you are familiar with Apache Spark Structured

Streaming. In that case, you may notice the absence of a checkpointLocation

(which is required to track the stream’s progress so that the stream can be

stopped and started without duplicating or dropping data). The absence of the

checkpointLocation is because Delta Live Tables manages this need out-of-the-

box for you. Delta Live Tables also has other features that help make developers

more agile and provide a common framework for ETL across the enterprise. Delta

Live Tables Expectations, used for managing data quality, is one such feature.

SILVER TABLES

The following function creates a Silver Streaming Table for the given game name

provided as a parameter:

Notice the use of the @dlt.table annotation. Thanks to this annotation, when

build_silver is invoked for a given gname, a DLT table will be defined that depends

on the source bronze_events table. We know that the tables created by this

function will be Streaming Tables because of the use of dlt.read_stream.

GOLD TABLES

The following function creates a Gold Materialized View for the given game name

provided as a parameter:

We know the resulting table will be a "Materialized View" because of the use of

dlt.read. This is a simple Materialized View definition; it simply performs a count

of source events along with min and max event times, grouped by gamer_id.

1
2
3
4

def build_silver(gname):
 .table(name=f"silver_{gname}_events")
 def gold_unified():
 return dlt.read_stream("bronze_events").where(F.col("game_name") == gname)

1
2
3
4
5
6
7
8
9
10
11
12

def build_gold(gname):
 .table(name=f"gold_{gname}_player_agg")
 def gold_unified():
 return (
 dlt.read(f"silver_{gname}_events")
 .groupBy(["gamer_id"])
 .agg(
 F.count("*").alias("session_count"),
 F.min(F.col("event_timestamp")).alias("min_timestamp"),
 F.max(F.col("event_timestamp")).alias("max_timestamp")
)
)

52E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/en/structured-streaming/protocol-buffers.html
https://www.databricks.com/blog/2022/10/19/deloittes-guide-declarative-data-pipelines-delta-live-tables.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://docs.databricks.com/en/structured-streaming/query-recovery.html
https://docs.databricks.com/en/delta-live-tables/expectations.html
https://docs.databricks.com/en/delta-live-tables/expectations.html

METADATA-DRIVEN TABLES

The previous two sections of this article defined functions for creating Silver

(Streaming) Tables and Gold Materialized Views. The metadata-driven approach

in the example code uses a pipeline input parameter to create N*2 target tables

(one Silver table for each game and one aggregate Gold table for each game).

This code drives the dynamic table creation using the aforementioned

build_silver and build_gold functions:

A note about aggregates in a streaming pipeline

At this point, you might have noticed that much of the control flow code

data engineers often have to write is absent. This is because, as mentioned

above, DLT is a declarative programming framework. It automatically detects

dependencies and manages the pipeline’s execution flow. Here’s the DAG that

DLT creates for the pipeline:

1

2
3
4

GAMES_ARRAY = spark.conf.get("games").split(",")

for game in GAMES_ARRAY:
 build_silver(game)
 build_gold(game)

53E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

For a continuously running stream, calculating some aggregates can be very

resource-intensive. Consider a scenario where you must calculate the "median"

for a continuous stream of numbers. Every time a new number arrives in the

stream, the median calculation will need to explore the entire set of numbers

that have ever arrived. In a stream receiving millions of numbers per second, this

fact can present a significant challenge if your goal is to provide a destination

table for the median of the entire stream of numbers. It becomes impractical to

perform such a feat every time a new number arrives. The limits of computation

power and persistent storage and network would mean that the stream would

continue to grow a backlog much faster than it could perform the calculations.

In a nutshell, it would not work out well if you had such a stream and tried to

recalculate the median for the universe of numbers that have ever arrived in the

stream. So, what can you do? If you look at the code snippet above, you may

notice that this problem is not addressed in the code! Fortunately, as a Delta

Live Tables developer, I do not have to worry about it. The declarative framework

handles this dilemma by design. DLT addresses this by materializing results

only periodically. Furthermore, DLT provides a table property that allows the

developer to set an appropriate trigger interval.

REVIEWING THE BENEFITS OF DLT

Governance
Unity Catalog governs the end-to-end pipeline. Thus, permission to target tables

can be granted to end-users and service principals needing access across any

Databricks workspaces attached to the same metastore.

Lineage
From the Delta Live Tables interface, we can navigate to the Catalog and

view lineage.

Click on a table in the

DAG. Then click on the

"Target table" link.

54E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/en/delta-live-tables/settings.html#pipelines-trigger-interval
https://docs.databricks.com/en/data-governance/unity-catalog/create-metastore.html

Click on the "Lineage"

tab for the table. Then

click on the "See lineage

graph" link.

Lineage also provides

visibility into other

related artifacts,

such as notebooks,

models, etc.

This lineage helps

accelerate team

velocity by making it

easier to understand

how assets in the

workspace are related.

HANDS- OFF SCHEMA EVOLUTION

Delta Live Tables will detect this as the source stream’s schema evolves, and the

pipeline will restart. To simulate a schema evolution for this example, you would

run the Producer notebook a subsequent time but with a larger value for

num_versions, as shown on the left. This will generate new data where the

schema includes some additional columns. The Producer notebook updates the

schema details in the Confluent Schema Registry.

55E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

When the schema evolves, you will see a pipeline failure like this one: If the Delta Live Tables pipeline runs in Production mode, a failure will result in an

automatic pipeline restart. The Schema Registry will be contacted upon restart

to retrieve the latest schema definitions. Once back up, the stream will continue

with a new run:

56E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/workflows/delta-live-tables/delta-live-tables-concepts.html#development-and-production-modes

CONCLUSION

In high-performance IoT systems, optimization extends through every layer of

the technology stack, focusing on the payload format of messages in transit.

Throughout this article, we’ve delved into the benefits of using an optimized

serialization format, protobuf, and demonstrated its integration with Databricks to

construct a comprehensive end-to-end demultiplexing pipeline. This approach

underlines the importance of selecting the right tools and formats to maximize

efficiency and effectiveness in IoT systems.

Instructions for running the example
To run the example code, follow these instructions:

1.	 In Databricks, clone this repo:

https://github.com/craig-db/protobuf-dlt-schema-evolution.

2.	Set up the prerequisites (documented below).

3.	Follow the instructions in the README notebook included in the repo code.

Prerequisites
1.	 A Unity Catalog-enabled workspace — this demo uses a Unity Catalog-

enabled Delta Live Tables pipeline. Thus, Unity Catalog should be

configured for the workspace where you plan to run the demo.

2.	As of January 2024, you should use the Preview channel for the Delta Live

Tables pipeline. The "Install_DLT_Pipeline" notebook will use the Preview

channel when installing the pipeline.

3.	Confluent account – this demo uses Confluent Schema Registry and

Confluent Kafka.

Secrets to configure
The following Kafka and Schema Registry connection details (and credentials)

should be saved as Databricks Secrets and then set within the Secrets notebook

that is part of the repo:

	■ SR_URL: Schema Registry URL

(e.g. https://myschemaregistry.aws.confluent.cloud)

	■ SR_API_KEY: Schema Registry API Key

	■ SR_API_SECRET: Schema Registry API Secret

	■ KAFKA_KEY: Kafka API Key

	■ KAFKA_SECRET: Kafka Secret

	■ KAFKA_SERVER: Kafka host:port (e.g. mykafka.aws.confluent.cloud:9092)

	■ KAFKA_TOPIC: The Kafka Topic

	■ TARGET_SCHEMA: The target database where the streaming data will be

appended into a Delta table (the destination table is named unified_gold)

	■ CHECKPOINT_LOCATION: Some location (e.g., in DBFS) where the

checkpoint data for the streams will be stored

Go here to learn how to save secrets to secure sensitive information (e.g.,

credentials) within the Databricks Workspace: https://docs.databricks.com/

security/secrets/index.html.

57E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://github.com/craig-db/protobuf-dlt-schema-evolution
https://myschemaregistry.aws.confluent.cloud/
https://docs.databricks.com/dbfs/index.html
https://docs.databricks.com/structured-streaming/query-recovery.html#enable-checkpointing-for-structured-streaming-queries
https://docs.databricks.com/security/secrets/index.html
https://docs.databricks.com/security/secrets/index.html

Design Patterns for Batch Processing in
Financial Services
by Eon Retief

Financial services institutions (FSIs) around the world are facing unprecedented

challenges ranging from market volatility and political uncertainty to changing

legislation and regulations. Businesses are forced to accelerate digital

transformation programs; automating critical processes to reduce operating

costs and improve response times. However, with data typically scattered

across multiple systems, accessing the information required to execute on these

initiatives tends to be easier said than done.

Architecting an ecosystem of services able to support the plethora of data-

driven use cases in this digitally transformed business can, however, seem

to be an impossible task. This chapter will focus on one crucial aspect of the

modern data stack: batch processing. A seemingly outdated paradigm, we’ll see

why batch processing remains a vital and highly viable component of the data

architecture. And we’ll see how Databricks can help FSIs navigate some of the

crucial challenges faced when building infrastructure to support these scheduled

or periodic workflows.

WHY BATCH INGESTION MATTERS

Over the last two decades, the global shift towards an instant society has forced

organizations to rethink the operating and engagement model. A digital-first

strategy is no longer optional but vital for survival. Customer needs and demands

are changing and evolving faster than ever. This desire for instant gratification

is driving an increased focus on building capabilities that support real-time

processing and decisioning. One might ask whether batch processing is still

relevant in this new dynamic world.

While real-time systems and streaming services can help FSIs remain agile in

addressing the volatile market conditions at the edge, they do not typically

meet the requirements of back-office functions. Most business decisions are

not reactive but rather, require considered, strategic reasoning. By definition,

this approach requires a systematic review of aggregate data collected over a

period of time. Batch processing in this context still provides the most efficient

and cost-effective method for processing large, aggregate volumes of data.

Additionally, batch processing can be done offline, reducing operating costs and

providing greater control over the end-to-end process.

The world of finance is changing, but across the board incumbents and

startups continue to rely heavily on batch processing to power core business

functions. Whether for reporting and risk management or anomaly detection and

surveillance, FSIs require batch processing to reduce human error, increase the

speed of delivery, and reduce operating costs.

58E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

GETTING STARTED

Starting with a 30,000-ft view, most FSIs will have a multitude of data sources

scattered across on-premises systems, cloud-based services and even third-

party applications. Building a batch ingestion framework that caters for all these

connections require complex engineering and can quickly become a burden

on maintenance teams. And that’s even before considering things like change

data capture (CDC), scheduling, and schema evolution. In this section, we will

demonstrate how the Databricks Lakehouse for Financial Services (LFS) and its

ecosystem of partners can be leveraged to address these key challenges and

greatly simplify the overall architecture.

The Databricks lakehouse architecture was designed to provide a unified

platform that supports all analytical and scientific data workloads. Figure 1 shows

the reference architecture for a decoupled design that allows easy integration

with other platforms that support the modern data ecosystem. The lakehouse

makes it easy to construct ingestion and serving layers that operate irrespective

of the data’s source, volume, velocity, and destination.

Figure 1: Reference architecture of the Lakehouse for Financial Services

To demonstrate the power and efficiency of the LFS, we turn to the world of

insurance. We consider the basic reporting requirements for a typical claims

workflow. In this scenario, the organization might be interested in the key metrics

driven by claims processes. For example:

	■ Number of active policies

	■ Number of claims

	■ Value of claims

	■ Total exposure

	■ Loss ratio

Additionally, the business might want a view of potentially suspicious claims and

a breakdown by incident type and severity. All these metrics are easily calculable

from two key sources of data: 1) the book of policies and 2) claims filed by

customers. The policy and claims records are typically stored in a combination

of enterprise data warehouses (EDWs) and operational databases. The main

challenge becomes connecting to these sources and ingesting data into our

lakehouse, where we can leverage the power of Databricks to calculate the

desired outputs.

Luckily, the flexible design of the LFS makes it easy to leverage best-in-class

products from a range of SaaS technologies and tools to handle specific

tasks. One possible solution for our claims analytics use case would be to use

Fivetran for the batch ingestion plane. Fivetran provides a simple and secure

platform for connecting to numerous data sources and delivering data directly

to the Databricks lakehouse. Additionally, it offers native support for CDC,

schema evolution and workload scheduling. In Figure 2, we show the technical

architecture of a practical solution for this use case.

59E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/solutions/industries/financial-services

Figure 2: Technical architecture for a simple insurance claims workflow

60E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

Once the data is ingested and delivered to the LFS, we can use Delta Live

Tables (DLT) for the entire engineering workflow. DLT provides a simple, scalable

declarative framework for automating complex workflows and enforcing data

quality controls. The outputs from our DLT workflow, our curated and aggregated

assets, can be interrogated using Databricks SQL (DB SQL). DB SQL brings data

warehousing to the LFS to power business-critical analytical workloads. Results

from DB SQL queries can be packaged in easy-to-consume dashboards and

served to business users.

STEP 1 : CREATING THE INGESTION LAYER

Setting up an ingestion layer with Fivetran requires a two-step process. First,

configuring a so-called destination where data will be delivered, and second,

establishing one or more connections with the source systems. The Partner

Connect interface takes care of the first step with a simple, guided interface to

connect Fivetran with a Databricks Warehouse. Fivetran will use the warehouse

to convert raw source data to Delta Tables and store the results in the Databricks

Lakehouse. Figures 3 and 4 show steps from the Partner Connect and Fivetran

interfaces to configure a new destination.

Figure 3: Databricks Partner Connect interface for creating a new connection

61E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/product/delta-live-tables
https://www.databricks.com/product/delta-live-tables
https://www.databricks.com/product/databricks-sql
https://www.databricks.com/partnerconnect
https://www.databricks.com/partnerconnect

Figure 4: Fivetran interface for confirming a new destination

Figure 5: Fivetran interface for selecting a data source type

For the next step, we move to the Fivetran interface. From here, we can

easily create and configure connections to several different source systems

(please refer to the official documentation for a complete list of all supported

connections). In our example, we consider three sources of data: 1) policy

records stored in an Operational Data Store (ODS) or Enterprise Data Warehosue

(EDW), 2) claims records stored in an operational database, and 3) external data

delivered to blob storage. As such, we require three different connections to be

configured in Fivetran. For each of these, we can follow Fivetran’s simple guided

process to set up a connection with the source system. Figures 5 and 6 show

how to configure new connections to data sources.

62E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.fivetran.com/connectors

Figure 6: Fivetran interface for configuring a data source connection Figure 7: Overview of configuration for a Fivetran connect

Connections can further be configured once they have been validated. One

important option to set is the frequency with which Fivetran will interrogate the

source system for new data. In Figure 7, we can see how easy Fivetran has made

it to set the sync frequency with intervals ranging from 5 minutes to 24 hours.

Fivetran will immediately interrogate and ingest data from source systems once

a connection is validated. Data is stored as Delta tables and can be viewed from

within Databricks through the DB SQL Data Explorer. By default, Fivetran will

store all data under the Hive metastore. A new schema is created for each new

connection, and each schema will contain at least two tables: one containing the

data and another with logs from each attempted ingestion cycle (see Figure 8).

63E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/data/index.html

Figure 8: Summary of tables created by Fivetran in the Databricks Warehouse for
an example connection

Figure 9: View of the history showing changes made to the Fivetran audit table

It is important to note that if the source data contains semi-structured or unstructured values, those
attributes will be flattened during the conversion process. This means that the results will be stored in
grouped text-type columns, and these entities will have to be dissected and unpacked with DLT in the
curation process to create separate attributes.

Having the data stored in Delta tables is a significant advantage. Delta Lake

natively supports granular data versioning, meaning we can time travel through

each ingestion cycle (see Figure 9). We can use DB SQL to interrogate specific

versions of the data to analyze how the source records evolved.

STEP 2: AUTOMATING THE WORKFLOW

With the data in the Databricks Data Intelligence Platform, we can use Delta

Live Tables (DLT) to build a simple, automated data engineering workflow. DLT

provides a declarative framework for specifying detailed feature engineering

steps. Currently, DLT supports APIs for both Python and SQL. In this example,

we will use Python APIs to build our workflow.

The most fundamental construct in DLT is the definition of a table. DLT

interrogates all table definitions to create a comprehensive workflow for how

data should be processed. For instance, in Python, tables are created using

function definitions and the `dlt.tablè decorator (see example of Python code

below). The decorator is used to specify the name of the resulting table, a

descriptive comment explaining the purpose of the table, and a collection of

table properties.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

16

@dlt.table(
 name = "curated_claims",
 comment = "Curated claim records",
 table_properties = {
 "layer": "silver",
 "pipelines.autoOptimize.managed": "true",
 "delta.autoOptimize.optimizeWrite": "true",
 "delta.autoOptimize.autoCompact": "true"
 }
)
def curate_claims():
 # Read the staged claim records into memory
 staged_claims = dlt.read("staged_claims")
 # Unpack all nested attributes to create a flattened table structure
 curated_claims = unpack_nested(df = staged_claims, schema = schema_claims)

 ...

64E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

Instructions for feature engineering are defined inside the function body using

standard PySpark APIs and native Python commands. The following example

shows how PySpark joins claims records with data from the policies table to

create a single, curated view of claims.

One significant advantage of DLT is the ability to specify and enforce data quality

standards. We can set expectations for each DLT table with detailed data quality

constraints that should be applied to the contents of the table. Currently, DLT

supports expectations for three different scenarios:

Expectations can be defined with one or more data quality constraints. Each

constraint requires a description and a Python or SQL expression to evaluate.

Multiple constraints can be defined using the expect_all, expect_all_or_drop,

and expect_all_or_fail decorators. Each decorator expects a Python dictionary

where the keys are the constraint descriptions, and the values are the respective

expressions. The example below shows multiple data quality constraints for the

retain and drop scenarios described above.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34

...

 # Read the staged claim records into memory
 curated_policies = dlt.read("curated_policies")
 # Evaluate the validity of the claim
 curated_claims = curated_claims \
 .alias("a") \
 .join(
 curated_policies.alias("b"),
 on = F.col("a.policy_number") == F.col("b.policy_number"),
 how = "left"
) \
 .select([F.col(f"a.{c}") for c in curated_claims.columns] + [F.col(f"b.{c}").
alias(f"policy_{c}") for c in ("effective_date", "expiry_date")]) \
 .withColumn(
 # Calculate the number of months between coverage starting and the
claim being filed
 "months_since_covered", F.round(F.months_between(F.col("claim_date"),
F.col("policy_effective_date")))
) \
 .withColumn(
 # Check if the claim was filed before the policy came into effect
 "claim_before_covered", F.when(F.col("claim_date") < F.col("policy_
effective_date"), F.lit(1)).otherwise(F.lit(0))
) \
 .withColumn(
 # Calculate the number of days between the incident occurring and the
claim being filed
 "days_between_incident_and_claim", F.datediff(F.col("claim_date"),
F.col("incident_date"))
)

 # Return the curated dataset
 return curated_claims

D ECO R ATO R D ESC R I P TI O N

expect Retain records that violate expectations

expect_or_drop Drop records that violate expectations

expect_or_fail Halt the execution if any record(s) violate constraints

65E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
17
18
19
20

@dlt.expect_all({
 "valid_driver_license": "driver_license_issue_date > (current_date() -
cast(cast(driver_age AS INT) AS INTERVAL YEAR))",
 "valid_claim_amount": "total_claim_amount > 0",
 "valid_coverage": "months_since_covered > 0",
 "valid_incident_before_claim": "days_between_incident_and_claim > 0"
})
@dlt.expect_all_or_drop({
 "valid_claim_number": "claim_number IS NOT NULL",
 "valid_policy_number": "policy_number IS NOT NULL",
 "valid_claim_date": "claim_date < current_date()",
 "valid_incident_date": "incident_date < current_date()",
 "valid_incident_hour": "incident_hour between 0 and 24",
 "valid_driver_age": "driver_age > 16",
 "valid_effective_date": "policy_effective_date < current_date()",
 "valid_expiry_date": "policy_expiry_date <= current_date()"
})
def curate_claims():
 ...

We can use more than one Databricks Notebook to declare our DLT tables.

Assuming we follow the medallion architecture, we can, for example, use

different notebooks to define tables comprising the bronze, silver, and gold layers.

The DLT framework can digest instructions defined across multiple notebooks

to create a single workflow; all inter-table dependencies and relationships

are processed and considered automatically. Figure 10 shows the complete

workflow for our claims example. Starting with three source tables, DLT builds a

comprehensive pipeline that delivers thirteen tables for business consumption.

Figure 10: Overview of a complete Delta Live Tables (DLT) workflow

66E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/glossary/medallion-architecture

Results for each table can be inspected by selecting the desired entity. Figure

11 provides an example of the results of the curated claims table. DLT provides a

high-level overview of the results from the data quality controls:

Results from the data quality expectations can be analyzed further by querying

the event log. The event log contains detailed metrics about all expectations

defined for the workflow pipeline. The query below provides an example for

viewing key metrics from the last pipeline update, including the number of

records that passed or failed expectations:

Again, we can view the complete history of changes made to each DLT table

by looking at the Delta history logs (see Figure 12). It allows us to understand

how tables evolve over time and investigate complete threads of updates

if a pipeline fails.

Figure 11: Example of detailed view for a Delta Live Tables (DLT) table entity with the associated data
quality report

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
17
18
19
20
21
22
23
24
25

SELECT
 row_expectations.dataset AS dataset,
 row_expectations.name AS expectation,
 SUM(row_expectations.passed_records) AS passing_records,
 SUM(row_expectations.failed_records) AS failing_records
FROM
 (
 SELECT
 explode(
 from_json(
 details :flow_progress :data_quality :expectations,
 "array<struct<name: string, dataset: string, passed_records: int, failed_
records: int>>"
)
) row_expectations
 FROM
 event_log_raw
 WHERE
 event_type = 'flow_progress'
 AND origin.update_id = '${latest_update.id}'
)
GROUP BY
 row_expectations.dataset,
 row_expectations.name;

67E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/workflows/delta-live-tables/delta-live-tables-event-log.html#data-quality-metrics

Figure 12: View the history of changes made to a resulting Delta Live Tables (DLT) table entity

We can further use change data capture (CDC) to update tables based on

changes in the source datasets. DLT CDC supports updating tables with slow-

changing dimensions (SCD) types 1 and 2.

We have one of two options for our batch process to trigger the DLT pipeline.

We can use the Databricks Auto Loader to incrementally process new data as

it arrives in the source tables or create scheduled jobs that trigger at set times

or intervals. In this example, we opted for the latter with a scheduled job that

executes the DLT pipeline every five minutes.

OPERATIONALIZING THE OUTPUTS

The ability to incrementally process data efficiently is only half of the equation.

Results from the DLT workflow must be operationalized and delivered to

business users. In our example, we can consume outputs from the DLT pipeline

through ad hoc analytics or prepacked insights made available through an

interactive dashboard.

AD HOC ANALY TICS

Databricks SQL (or DB SQL) provides an efficient, cost-effective data warehouse

on top of the Data Intelligence Platform. It allows us to run our SQL workloads

directly against the source data with up to 12x better price/performance than

its alternatives.

We can leverage DB SQL to perform specific ad hoc queries against our curated

and aggregated tables. We might, for example, run a query against the curated

policies table that calculates the total exposure. The DB SQL query editor

provides a simple, easy-to-use interface to build and execute such queries (see

example below).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
17
18
19

SELECT
 round(curr.total_exposure, 0) AS total_exposure,
 round(prev.total_exposure, 0) AS previous_exposure
FROM
 (
 SELECT
 sum(sum_insured) AS total_exposure
 FROM
 insurance_demo_lakehouse.curated_policies
 WHERE
 expiry_date > '{{ date.end }}'
 AND (effective_date <= '{{ date.start }}'
 OR (effective_date BETWEEN '{{ date.start }}' AND '{{ date.end }}'))
) curr
 JOIN
 (
 SELECT
 ...

68E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/ingestion/auto-loader/index.html

1
2
3
4
5

SELECT
 *
FROM
 insurance_demo_lakehouse.aggregated_claims_weekly TIMESTAMP AS OF '2022-06-
05T17:00:00';

We can also use the DB SQL query editor to run queries against different versions

of our Delta tables. For example, we can query a view of the aggregated claims

records for a specific date and time (see example below). We can further use

DB SQL to compare results from different versions to analyze only the changed

records between those states.

For our use case, we created a dashboard with a collection of key metrics,

rolling calculations, high-level breakdowns, and aggregate views. The dashboard

provides a complete summary of our claims process at a glance. We also added

the option to specify specific date ranges. DB SQL supports a range of query

parameters that can substitute values into a query at runtime. These query

parameters can be defined at the dashboard level to ensure all related queries

are updated accordingly.

DB SQL integrates with numerous third-party analytical and BI tools like Power

BI, Tableau and Looker. Like we did for Fivetran, we can use Partner Connect to

link our external platform with DB SQL. This allows analysts to build and serve

dashboards in the platforms that the business prefers without sacrificing the

performance of DB SQL and the Databricks Lakehouse.

DB SQL offers the option to use a serverless compute engine, eliminating the

need to configure, manage or scale cloud infrastructure while maintaining the

lowest possible cost. It also integrates with alternative SQL workbenches (e.g.,

DataGrip), allowing analysts to use their favorite tools to explore the data and

generate insights.

BUSINESS INSIGHTS

Finally, we can use DB SQL queries to create rich visualizations on top of our

query results. These visualizations can then be packaged and served to end

users through interactive dashboards (see Figure 13).

Figure 13: Example operational dashboard built on a set of resulting Delta Live Table (DLT) table entities

69E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

CONCLUSION

As we move into this fast-paced, volatile modern world of finance, batch processing remains a vital part of the modern data stack, able to hold its own against the

features and benefits of streaming and real-time services. We've seen how we can use the Databricks Data Intelligence Platform for Financial Services and its ecosystem

of partners to architect a simple, scalable and extensible framework that supports complex batch-processing workloads with a practical example in insurance claims

processing. With Delta Live Tables (DLT) and Databricks SQL (DB SQL), we can build a data platform with an architecture that scales infinitely, is easy to extend to address

changing requirements and will withstand the test of time.

To learn more about the sample pipeline described, including the infrastructure setup and configuration used, please refer to this GitHub repository or watch this

demo video.

70E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://github.com/databricks-industry-solutions/dlt-insurance-claims
https://www.youtube.com/watch?v=LkckhRjezxs

How to Set Up Your First Federated
Lakehouse
by Mike Dobing

Lakehouse Federation in Databricks is a groundbreaking new capability that

allows you to query data across external data sources — including Snowflake,

Synapse, many others and even Databricks itself — without having to move or

copy the data. This is done by using Databricks Unity Catalog, which provides a

unified metadata layer for all of your data.

Lakehouse Federation is a game-changer for data teams, as it breaks down the

silos that have traditionally kept data locked away in different systems. With

Lakehouse Federation, you can finally access all of your data in one place, making

it easier to get the insights you need to make better business decisions.

As always, though, not one solution is a silver bullet for your data integration and

querying needs. See below for when Federation is a good fit, and for when you’d

prefer to bring your data into your solution and process as part of your lakehouse

platform pipelines.

A few of the benefits of using Lakehouse Federation in Databricks are:

	■ Improved data access and discovery: Lakehouse Federation makes it

easy to find and access the data you need from your database estate. This

is especially important for organizations with complex data landscapes.

	■ Reduced data silos: Lakehouse Federation can help to break down data

silos by providing a unified view of all data across the organization.

	■ Improved data governance: Lakehouse Federation can help to improve

data governance by providing a single place to manage permissions and

access to data from within Databricks.

	■ Reduced costs: Lakehouse Federation can help to reduce costs by

eliminating the need to move or copy data between different data sources.

If you are looking for a way to improve the way you access and manage your

data across your analytics estate, then Lakehouse Federation in Databricks is a

top choice.

71E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/blog/introducing-lakehouse-federation-capabilities-unity-catalog
https://learn.microsoft.com/en-us/azure/databricks/query-federation/#--supported-data-sources
https://www.databricks.com/product/unity-catalog

REALIT Y CHECK

While Lakehouse Federation is a powerful tool, it is not a good fit for all use cases.

There are some specific examples of use cases when Lakehouse Federation is

not a good choice:

	■ Real-time data processing: Lakehouse Federation queries can be

slower than queries on data that is stored locally in the lake. Therefore,

Lakehouse Federation is not a good choice for applications that require

real-time data processing.

	■ Complex data transformations: Where you need complex

data transformations and processing, or need to ingest and transform

vast amounts of data. For probably the large majority of use cases,

you will need to apply some kind of ETL/ELT process against your data

to make it fit for consumption by end users. In these scenarios, it is still

best to apply a medallion style approach and bring the data in, process

it, clean it, then model and serve it so it is performant and fit for

consumption by end users.

Therefore, while Lakehouse Federation is a great option for certain use cases

as highlighted above, it’s not a silver bullet for all scenarios. Consider it an

augmentation of your analytics capability that allows for additional use cases

that need agility and direct source access for creating a holistic view of your data

estate, all controlled through one governance layer.

SETTING UP YOUR FIRST FEDERATED LAKEHOUSE

With that in mind, let’s get started on setting up your first federated lakehouse in

Databricks using Lakehouse Federation.

For this example, we will be using a familiar sample database — AdventureWorks

— running on an Azure SQL Database. We will be walking you through how to

set up your connection to Azure SQL and how to add it as a foreign catalog

inside Databricks.

PREREQUISITES

To set up Lakehouse Federation in Databricks, you will need the

following prerequisites:

	■ A Unity Catalog-enabled Databricks workspace with Databricks Runtime

13.1 or above and shared or sin...

	■ A Databricks Unity Catalog metastore

	■ Network connectivity from your Databricks Runtime cluster or SQL

warehouse to the target database systems, including any firewall

connectivity requirements, such as here

	■ The necessary permissions to create connections and foreign catalogs in

Databricks Unity Catalog

	■ The SQL Warehouse must be Pro or Serverless

	■ For this demo — an example database such as AdventureWorks to

use as our data source, along with the necessary credentials.

Please see this example.

72E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/en/clusters/configure.html#create-a-new-cluster
https://docs.databricks.com/en/clusters/configure.html#create-a-new-cluster
https://learn.microsoft.com/en-us/azure/databricks/data-governance/unity-catalog/get-started
https://learn.microsoft.com/en-us/azure/databricks/query-federation/networking
https://docs.databricks.com/en/query-federation/databricks.html#before-you-begin
https://docs.databricks.com/en/query-federation/databricks.html#before-you-begin
https://learn.microsoft.com/en-us/azure/azure-sql/database/single-database-create-quickstart?view=azuresql&tabs=azure-portal#create-a-single-database

SETUP

Setting up federation is essentially a three-step process, as follows:

	■ Set up a connection

	■ Set up a foreign catalog

	■ Query your data sources

SETTING UP A CONNECTION

We are going to use Azure SQL Database as the test data source with the sample

database AdventureWorksLT database already installed and ready to query:

We want to add this database as a foreign catalog in Databricks to be able to

query it alongside other data sources. To connect to the database, we need a

username, password and hostname, obtained from my Azure SQL Instance.

With these details ready, we can now go into Databricks and add the connection

there as our first step.

First, expand the Catalog view, go to Connections and click “Create Connection”:

Example query on the source database

73E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

To add your new connection, give it a name, choose your connection type and

then add the relevant login details for that data source:
CREATE A FOREIGN CATALOG

Test your connection and verify all is well. From there, go back to the Catalog

view and go to Create Catalog:

From there, populate the relevant details (choosing Type as “Foreign”), including

choosing the connection you created in the first step, and specifying the

database you want to add as an external catalog:

74E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

Once added, you can have the option of adding the relevant user permissions

to the objects here, all governed by Unity Catalog (skipped this in this article as

there are no other users using this database):

Our external catalog is now available for querying as you would any other catalog

inside Databricks, bringing our broader data estate into our lakehouse:

75E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

QUERYING THE FEDERATED DATA

We can now access our federated Azure SQL Database as normal, straight from

our Databricks SQL Warehouse:

CONCLUSION

What we’ve shown here is just scratching the surface of what Lakehouse

Federation can do with a simple connection and query. By leveraging this

offering, combined with the governance and capabilities of Unity Catalog, you

can extend the range of your lakehouse estate, ensuring consistent permissions

and controls across all of your data sources and thus enabling a plethora of new

use cases and opportunities.

And query it as we would any other object:

Or even join it to a local Delta table inside our Unity Catalog:

76E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

Orchestrating Data Analytics With
Databricks Workflows
by Matthew Kuehn

For data-driven enterprises, data analysts play a crucial role in extracting insights

from data and presenting it in a meaningful way. However, many analysts might

not have the familiarity with data orchestration required to automate their

workloads for production. While a handful of ad hoc queries can quickly turn

around the right data for a last-minute report, data teams must ensure that

various processing, transformation and validation tasks are executed reliably and

in the right sequence. Without the proper orchestration in place, data teams lose

the ability to monitor pipelines, troubleshoot failures and manage dependencies.

As a result, sets of ad hoc queries that initially brought quick-hitting value to the

business end up becoming long-term headaches for the analysts who built them.

Pipeline automation and orchestration becomes particularly crucial as the scale

of data grows and the complexity of pipelines increases. Traditionally, these

responsibilities have fallen on data engineers, but as data analysts begin to

develop more assets in the lakehouse, orchestration and automation becomes a

key piece to the puzzle.

For data analysts, the process of querying and visualizing data should be

seamless, and that's where the power of modern tools like Databricks Workflows

comes into play. In this chapter, we'll explore how data analysts can leverage

Databricks Workflows to automate their data processes, enabling them to focus

on what they do best — deriving value from data.

Data analysts play a vital role in the final stages of the data lifecycle. Positioned

at the "last mile," they rely on refined data from upstream pipelines. This could

be a table prepared by a data engineer or the output predictions of machine

learning models built by data scientists. This refined data, often referred to as the

Silver layer in a medallion architecture, serves as the foundation for their work.

Data analysts are responsible for aggregating, enriching and shaping this data to

answer specific questions for their business, such as:

	■ “How many orders were placed for each SKU last week?”

	■ “What was monthly revenue for each store last fiscal year?”

	■ “Who are our 10 most active users?”

These aggregations and enrichments build out the Gold layer of the medallion

architecture. This Gold layer enables easy consumption and reporting for

downstream users, typically in a visualization layer. This can take the form of

dashboards within Databricks or be seamlessly generated using external tools

like Tableau or Power BI via Partner Connect. Regardless of the tech stack, data

analysts transform raw data into valuable insights, enabling informed decision-

making through structured analysis and visualization techniques.

THE DATA ANALYST’S WORLD

77E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/product/workflows
https://www.databricks.com/partnerconnect

THE DATA ANALYST’S TOOLKIT ON DATABRICKS

In Databricks, data analysts have a robust toolkit at their fingertips to transform

data effectively on the lakehouse. Centered around the Databricks SQL Editor,

analysts have a familiar environment for composing ANSI SQL queries, accessing

data and exploring table schemas. These queries serve as building blocks

for various SQL assets, including visualizations that offer in-line data insights.

Dashboards consolidate multiple visualizations, creating a user-friendly interface

for comprehensive reporting and data exploration for end users.

Additionally, alerts keep analysts informed about critical dataset changes in

real time. Serverless SQL Warehouses are underpinning all these features, which

can scale to handle diverse data volumes and query demands. By default, this

compute uses Photon, the high-performance Databricks-native vectorized query

engine, and is optimized for high-concurrency SQL workloads. Finally, Unity

Catalog allows users to easily govern structured and unstructured data, machine

learning models, notebooks, dashboards and files in the lakehouse. This cohesive

toolkit empowers data analysts to transform raw data into enriched insights

seamlessly within the Databricks environment.

ORCHESTRATING THE DATA ANALYST’S TOOLKIT
WITH WORKFLOWS

For those new to Databricks, Workflows orchestrates data processing, machine

learning and analytics pipelines in the Data Intelligence Platform. Workflows is

a fully managed orchestration service integrated with the Databricks Platform,

with high reliability and advanced observability capabilities. This allows all users,

regardless of persona or background, to easily orchestrate their workloads in

production environments.

Authoring Your SQL Tasks
Building your first workflow as a data analyst is extremely simple. Workflows

now seamlessly integrates the core tools used by data analysts — queries,

alerts and dashboards — within its framework, enhancing its capabilities through

the SQL task type. This allows data analysts to build and work with the tools they

are already familiar with and then easily bring them into a Workflow as a Task via

the UI.

78E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/en/sql/user/sql-editor/index.html
https://docs.databricks.com/en/sql/user/dashboards/index.html
https://docs.databricks.com/en/sql/user/alerts/index.html
https://www.databricks.com/product/photon
https://www.databricks.com/product/unity-catalog
https://www.databricks.com/product/unity-catalog

As data analysts begin to chain more SQL tasks together, they will begin to easily

define dependencies between and gain the ability to schedule and automate

SQL-based tasks within Databricks Workflows. In the below example workflow, we

see this in action:

79E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

Imagine that we have received upstream data from our data engineering team

that allows us to begin our dashboard refresh process. We can define SQL-

centric tasks like the ones below to automate our pipeline:

	■ Create_State_Speed_Records: First, we define our refreshed data in our

Gold layer with the Query task. This inserts data into a Gold table and then

optimizes it for better performance.

	■ Data_Available_Alert: Once this data is inserted, imagine we want to

notify other data analysts who consume this table that new records have

been added. We can do this by creating an alert which will trigger when we

have new records added. This will send an alert to our stakeholder group.

You can imagine using an alert in a similar fashion for data quality checks

to warn users of stale data, null records or other similar situations. For

more information on creating your first alert, check out this link.

	■ Update_Dashboard_Dataset: It’s worth mentioning that tasks can be

defined in parallel if needed. In our example, while our alert is triggering

we can also begin refreshing our tailored dataset view that feeds our

dashboard in a parallel query.

	■ Dashboard_Refresh: Finally, we create a dashboard task type. Once our

dataset is ready to go, this will update all previously defined visualizations

with the newest data and notify all subscribers upon successful

completion. Users can even pass specific parameters to the dashboard

while defining the task, which can help generate a default view of the

dashboard depending on the end user’s needs.

It is worth noting that this example workflow utilizes queries directly written in the

Databricks SQL Editor. A similar pattern can be achieved with SQL code coming

from a repository using the File task type. With this task type, users can execute

.sql files stored in a Git repository as part of an automated workflow. Each time

the pipeline is executed, the latest version from a specific branch will be retrieved

and executed.

Although this example is basic, you can begin to see the possibilities of how

a data analyst can define dependencies across SQL task types to build a

comprehensive analytics pipeline.

80E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/en/sql/user/alerts/index.html#create-an-alert

MONITORING YOUR PRODUCTION PIPELINES

While authoring is comprehensive within Databricks Workflows, it is only one part

of the picture. Equally important is the ability to easily monitor and debug your

pipelines once they are built and in production.

Databricks Workflows allows users to monitor individual job runs, offering insights

into task outcomes and overall execution times. This visibility helps analysts

understand query performance, identify bottlenecks and address issues

efficiently. By promptly recognizing tasks that require attention, analysts can

ensure seamless data processing and quicker issue resolution.

When it comes to executing a pipeline at the right time, Databricks Workflows

allows users to schedule jobs for execution at specific intervals or trigger

them when certain files arrive. In the above image, we were first manually

triggering this pipeline to test and debug our tasks. Once we got this to

a steady state, we began triggering this every 12 hours to accommodate for

data refresh needs across time zones. This flexibility accommodates varying

data scenarios, ensuring timely pipeline execution. Whether it's routine

processing or responding to new data batches, analysts can tailor job execution

to match operational requirements.

Late-arriving data can bring a flurry of questions to a data analyst from end

users. Workflows enables analysts and consumers alike to stay informed on

data freshness by setting up notifications for job outcomes such as successful

execution, failure or even a long-running job. These notifications ensure timely

awareness of changes in data processing. By proactively evaluating a pipeline’s

status, analysts can take proactive measures based on real-time information.

As with all pipelines, failures will inevitably happen. Workflows helps manage this

by allowing analysts to configure job tasks for automatic retries. By automating

retries, analysts can focus on generating insights rather than troubleshooting

intermittent technical issues.

81E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

CONCLUSION

In the evolving landscape of data analysis tools, Databricks Workflows bridges

the gap between data analysts and the complexities of data orchestration. By

automating tasks, ensuring data quality and providing a user-friendly interface,

Databricks Workflows empowers analysts to focus on what they excel at —

extracting meaningful insights from data. As the concept of the lakehouse

continues to unfold, Workflows stands as a pivotal component, promising a

unified and efficient data ecosystem for all personas.

GET STARTED

	■ Learn more about Databricks Workflows

	■ Take a product tour of Databricks Workflows

	■ Create your first workflow with this quickstart guide

82E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/product/workflows
https://www.databricks.com/resources/demos/tours/data-engineering/databricks-workflows?itm_data=demo_center
https://docs.databricks.com/en/workflows/jobs/jobs-quickstart.html

Schema Management and Drift Scenarios
via Databricks Auto Loader
by Garrett Peternel

Data lakes notoriously have had challenges with managing incremental data

processing at scale without integrating open table storage format frameworks

(e.g., Delta Lake, Apache Iceberg, Apache Hudi). In addition, schema management

is difficult with schema-less data and schema-on-read methods. With the power

of the Databricks Platform, Delta Lake and Apache Spark provide the essential

technologies integrated with Databricks Auto Loader (AL) to consistently and

reliably stream and process raw data formats incrementally while maintaining

stellar performance and data governance.

AUTO LOADER FEATURES

AL is a boost over Spark Structured Streaming, supporting several additional

benefits and solutions including:

	■ Databricks Runtime only Structured Streaming cloudFiles source

	■ Schema drift, dynamic inference and evolution support

	■ Ingests data via JSON, CSV, PARQUET, AVRO, ORC, TEXT and BINARYFILE

input file formats

	■ Integration with cloud file notification services (e.g., Amazon SQS/SNS)

	■ Optimizes directory list mode scanning performance to discover new files

in cloud storage (e.g., AWS, Azure, GCP, DBFS)

For further information please visit the official Databricks Auto

Loader documentation.

SCHEMA CHANGE SCENARIOS

In this chapter I will showcase a few examples of how AL handles schema

management and drift scenarios using a public IoT sample dataset with

schema modifications to showcase solutions. Schema 1 will contain an IoT

sample dataset schema with all expected columns and expected data types.

Schema 2 will contain unexpected changes to the IoT sample dataset schema

with new columns and changed data types. The following variables and paths

will be used for this demonstration along with Databricks Widgets to set your

username folder.

SCHEMA 1

1
2

3
4
5

6
7
8

9

%scala
dbutils.widgets.text("dbfs_user_dir", "your_user_name") // widget for account email

val userName = dbutils.widgets.get("dbfs_user_dir")
val rawBasePath = s"dbfs:/user/$userName/raw/"
val repoBasePath = s"dbfs:/user/$userName/repo/"

val jsonSchema1Path = rawBasePath + "iot-schema-1.json"
val jsonSchema2Path = rawBasePath + "iot-schema-2.json"
val repoSchemaPath = repoBasePath + "iot-ddl.json"

dbutils.fs.rm(repoSchemaPath, true) // remove schema repo for demos

1
2

%scala
spark.read.json(jsonSchema1Path).printSchema

83E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/en/ingestion/auto-loader/index.html#what-is-auto-loader
https://docs.databricks.com/en/ingestion/auto-loader/index.html#what-is-auto-loader
https://docs.databricks.com/en/notebooks/widgets.html#databricks-widgets

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

root
|-- alarm_status: string (nullable = true)
|-- battery_level: long (nullable = true)
|-- c02_level: long (nullable = true)
|-- cca2: string (nullable = true)
|-- cca3: string (nullable = true)
|-- cn: string (nullable = true)
|-- coordinates: struct (nullable = true)
| |-- latitude: double (nullable = true)
| |-- longitude: double (nullable = true)
|-- date: string (nullable = true)
|-- device_id: long (nullable = true)
|-- device_serial_number: string (nullable = true)
|-- device_type: string (nullable = true)
|-- epoch_time_miliseconds: long (nullable = true)
|-- humidity: long (nullable = true)
|-- ip: string (nullable = true)
|-- scale: string (nullable = true)
|-- temp: double (nullable = true)
|-- timestamp: string (nullable = true)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

root
|-- alarm_status: string (nullable = true)
|-- battery_level: long (nullable = true)
|-- c02_level: long (nullable = true)
|-- date: string (nullable = true)
|-- device_id: long (nullable = true)
|-- device_serial_number_device_type: string (nullable = true)
|-- epoch_time_miliseconds: long (nullable = true)
|-- humidity: double (nullable = true)
|-- ip: string (nullable = true)
|-- latitude: double (nullable = true)
|-- location: struct (nullable = true)
| |-- cca2: string (nullable = true)
| |-- cca3: string (nullable = true)
| |-- cn: string (nullable = true)
|-- longitude: double (nullable = true)
|-- scale: string (nullable = true)
|-- temp: double (nullable = true)
|-- timestamp: string (nullable = true)

1
2

%scala
display(spark.read.json(jsonSchema1Path).limit(10))

1
2

%scala
display(spark.read.json(jsonSchema1Path).limit(10))

SCHEMA 2

1
2
3

%scala
// NEW => device_serial_number_device_type, location
spark.read.json(jsonSchema2Path).printSchema

84E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

EXAMPLE 1 : SCHEMA TRACKING/MANAGEMENT

AL tracks schema versions, metadata and changes to input data over time via

specifying a location directory path. These features are incredibly useful for

tracking history of data lineage, and are tightly integrated with the Delta Lake

transactional log DESCRIBE HISTORY and Time Travel. By default (for JSON, CSV and XML file format) AL infers all column data types as

strings, including nested fields.

Here is the directory structure where AL stores schema versions. These files can

be read via Spark DataFrame API.

Schema Repository

1
2
3
4
5
6
7

%scala
val rawAlDf = (spark
.readStream.format("cloudfiles")
.option("cloudFiles.format", "json")
.option("cloudFiles.schemaLocation", repoSchemaPath) // schema history tracking
.load(jsonSchema1Path)
)

1
2

%scala
rawAlDf.printSchema

1
2

%scala
display(rawAlDf.limit(10))

1
2

%scala
display(dbutils.fs.ls(repoSchemaPath + "/_schemas"))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

root
|-- alarm_status: string (nullable = true)
|-- battery_level: string (nullable = true)
|-- c02_level: string (nullable = true)
|-- cca2: string (nullable = true)
|-- cca3: string (nullable = true)
|-- cn: string (nullable = true)
|-- coordinates: string (nullable = true)
|-- date: string (nullable = true)
|-- device_id: string (nullable = true)
|-- device_serial_number: string (nullable = true)
|-- device_type: string (nullable = true)
|-- epoch_time_miliseconds: string (nullable = true)
|-- humidity: string (nullable = true)
|-- ip: string (nullable = true)
|-- scale: string (nullable = true)
|-- temp: string (nullable = true)
|-- timestamp: string (nullable = true)
|-- _rescued_data: string (nullable = true)

85E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/en/sql/language-manual/delta-describe-history.html
https://docs.databricks.com/en/reference/spark.html#apache-spark-api-reference

Schema Metadata

1
2

%scala
display(spark.read.json(repoSchemaPath + "/_schemas"))

EXAMPLE 2: SCHEMA HINTS

AL provides hint logic using SQL DDL syntax to enforce and override dynamic

schema inference on known single data types, as well as semi-structured

complex data types.
The schema hints specified in the AL options perform the data type mappings

on the respective columns. Hints are useful for applying schema enforcement

on portions of the schema where data types are known while in tandem with

dynamic schema inference covered in Example 3.

1
2
3
4
5
6
7
8
9

%scala
val hintAlDf = (spark
.readStream.format("cloudfiles")
.option("cloudFiles.format", "json")
.option("cloudFiles.schemaLocation", repoSchemaPath)
.option("cloudFiles.schemaHints", "coordinates STRUCT<latitude:DOUBLE,
longitude:DOUBLE>, humidity LONG, temp DOUBLE") // schema ddl hints
.load(jsonSchema1Path)
)

1
2

%scala
hintAlDf.printSchema

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

root
|-- alarm_status: string (nullable = true)
|-- battery_level: string (nullable = true)
|-- c02_level: string (nullable = true)
|-- cca2: string (nullable = true)
|-- cca3: string (nullable = true)
|-- cn: string (nullable = true)
|-- coordinates: struct (nullable = true)
| |-- latitude: double (nullable = true)
| |-- longitude: double (nullable = true)
|-- date: string (nullable = true)
|-- device_id: string (nullable = true)
|-- device_serial_number: string (nullable = true)
|-- device_type: string (nullable = true)
|-- epoch_time_miliseconds: string (nullable = true)
|-- humidity: long (nullable = true)
|-- ip: string (nullable = true)
|-- scale: string (nullable = true)
|-- temp: double (nullable = true)
|-- timestamp: string (nullable = true)
|-- _rescued_data: string (nullable = true)

1
2

%scala
display(hintAlDf.limit(10))

86E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/en/ingestion/auto-loader/schema.html#override-schema-inference-with-schema-hints

EXAMPLE 3: DYNAMIC SCHEMA INFERENCE

AL dynamically searches a sample of the dataset to determine nested structure.

This avoids costly and slow full dataset scans to infer schema. The following

configurations are available to adjust the amount of sample data used on read to

discover initial schema:

1.	 spark.databricks.cloudFiles.schemaInference.sampleSize.numBytes

(default 50 GB)

2.	spark.databricks.cloudFiles.schemaInference.sampleSize.numFiles (default

1000 files)

1
2
3
4
5
6
7
8

%scala
val inferAlDf = (spark
.readStream.format("cloudfiles")
.option("cloudFiles.format", "json")
.option("cloudFiles.schemaLocation", repoSchemaPath)
.option("cloudFiles.inferColumnTypes", true) // schema inference
.load(jsonSchema1Path)
)

1
2

%scala
inferAlDf.printSchema

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

root
|-- alarm_status: string (nullable = true)
|-- battery_level: long (nullable = true)
|-- c02_level: long (nullable = true)
|-- cca2: string (nullable = true)
|-- cca3: string (nullable = true)
|-- cn: string (nullable = true)
|-- coordinates: struct (nullable = true)
| |-- latitude: double (nullable = true)
| |-- longitude: double (nullable = true)
|-- date: string (nullable = true)
|-- device_id: long (nullable = true)
|-- device_serial_number: string (nullable = true)
|-- device_type: string (nullable = true)
|-- epoch_time_miliseconds: long (nullable = true)
|-- humidity: long (nullable = true)
|-- ip: string (nullable = true)
|-- scale: string (nullable = true)
|-- temp: double (nullable = true)
|-- timestamp: string (nullable = true)
|-- _rescued_data: string (nullable = true)

1
2

%scala
display(inferAlDf.limit(10))

AL saves the initial schema to the schema location path provided. This schema

serves as the base version for the stream during incremental processing.

Dynamic schema inference is an automated approach to applying schema

changes over time.

87E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/en/ingestion/auto-loader/schema.html#how-does-auto-loader-schema-inference-work

EXAMPLE 4: STATIC USER-DEFINED SCHEMA

AL also supports static custom schemas just like Spark Structured Streaming.

This eliminates the need for dynamic schema-on-read inference scans, which

trigger additional Spark jobs and schema versions. The schema can be retrieved

as a DDL string or a JSON payload.

DDL

Here’s an example of how to generate a user-defined StructType (Scala) |

StructType (Python) via DDL DataFrame command or JSON queried from AL

schema repository.

JSON

1
2

%scala
inferAlDf.schema.toDDL

1
2
3
4
5

String = alarm_status STRING,battery_level BIGINT,c02_level BIGINT,cca2 STRING,cca3
STRING,cn STRING,coordinates STRUCT<latitude: DOUBLE, longitude: DOUBLE>,date
STRING,device_id BIGINT,device_serial_number STRING,device_type STRING,epoch_time_
miliseconds BIGINT,humidity BIGINT,ip STRING,scale STRING,temp DOUBLE,timestamp
STRING,_rescued_data STRING

1
2
3

%scala
spark.read.json(repoSchemaPath + "/_schemas").select("dataSchemaJson").
where("dataSchemaJson is not null").first()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

org.apache.spark.sql.Row = [{"type":"struct","fields":[{"name":"alarm_
status","type":"string","nullable":true,"metadata":{}},{"name":"battery_level","type":
"long","nullable":true,"metadata":{}},{"name":"c02_level","type":"long","nullable":true,
"metadata":{}},{"name":"cca2","type":"string","nullable":true,"metadata":{}},{"name":
"cca3","type":"string","nullable":true,"metadata":{}},{"name":"cn","type":"string",
"nullable":true,"metadata":{}},{"name":"coordinates","type":{"type":"struct","fields":
[{"name":"latitude","type":"double","nullable":true,"metadata":{}},{"name":"longitude",
"type":"double","nullable":true,"metadata":{}}]},"nullable":true,"metadata":{}},
{"name":"date","type":"string","nullable":true,"metadata":{}},{"name":"device_id",
"type":"long","nullable":true,"metadata":{}},{"name":"device_serial_number","type":
"string","nullable":true,"metadata":{}},{"name":"device_type","type":"string",
"nullable":true,"metadata":{}},{"name":"epoch_time_miliseconds","type":"long",
"nullable":true,"metadata":{}},{"name":"humidity","type":"long","nullable":true,
"metadata":{}},{"name":"ip","type":"string","nullable":true,"metadata":{}},{"name":
"scale","type":"string","nullable":true,"metadata":{}},{"name":"temp","type":"double",
"nullable":true,"metadata":{}},{"name":"timestamp","type":"string","nullable":true,
"metadata":{}}]}]

88E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://api-docs.databricks.com/scala/spark/latest/org/apache/spark/sql/types/StructType$.html
https://api-docs.databricks.com/python/pyspark/latest/pyspark.sql/api/pyspark.sql.types.StructType.html

1
2

3
4
5
6
7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

%scala
import org.apache. spark.sql. types. {DataType, StructType}

val ddl = """alarm_status STRING, battery_level BIGINT,c02_level BIGINT,cca2 STRING,
cca3 STRING, cn STRING, coordinates STRUCT<latitude: DOUBLE, longitude: DOUBLE>,
date STRING, device_id BIGINT, device_serial_number STRING, device_type STRING,
epoch_time_miliseconds BIGINT, humidity BIGINT, ip STRING, scale STRING,temp DOUBLE,
timestamp STRING, _rescued_data STRING"""

val ddlSchema = StructType.fromDDL(ddl)

val json = """{"type":"struct","fields":[{"name":"alarm_status","type":"string",
"nullable":true,"metadata":{}},{"name":"battery_level","type":"long","nullable":
true,"metadata":{}},{"name":"c02_level","type":"long","nullable":true, "metadata"
:{}},{"name":"cca2","type":"string","nullable":true,"metadata":{}},{"name":"cca3",
"type":"string","nullable":true,"metadata":{}},{"name":"cn","type":"string","nullable":
true,"metadata":{}},{"name":"coordinates","type":{"type":"struct","fields":
[{"name":"latitude","type":"double","nullable":true,"metadata":{}},{"name":"longitude",
"type":"double","nullable":true,"metadata":{}}]},"nullable":true,"metadata":{}},{"name"
:"date","type":"string","nullable":true,"metadata":{}},{"name":"device_id","type":
"long","nullable":true,"metadata":{}},{"name":"deviceserial_number","type":"string",
"nullable":true,"metadata":{}},{"name":"device_type","type":"string","nullable":true,
"metadata":{}},{"name":"epochtime_miliseconds","type":"long","nullable":true,"metadata":{}}
,{"name":"humidity","type":"long","nullable":true,"metadata":{}},{"name":
"ip","type":"string","nullable":true,"metadata":{}},{"name":"scale","type":"string",
"nullable":true,"metadata":{}},{"name":"temp","type":"double","nullable":true,
"metadata":{}},{"name":"timestamp","type":"string","nullable":true,"metadata":{}}]}"""

val jsonSchema = DataType. fromJson(json).asInstanceOf[StructType]

1
2
3
4
5
6
7

%scala
val schemaAlDf = (spark
.readStream.format("cloudfiles")
.option("cloudFiles.format", "json")
.schema(jsonSchema) // schema structtype definition
.load(jsonSchema1Path)
)

1
2

%scala
schemaAlDf.printSchema

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

root
|-- alarm_status: string (nullable = true)
|-- battery_level: long (nullable = true)
|-- c02_level: long (nullable = true)
|-- cca2: string (nullable = true)
|-- cca3: string (nullable = true)
|-- cn: string (nullable = true)
|-- coordinates: struct (nullable = true)
| |-- latitude: double (nullable = true)
| |-- longitude: double (nullable = true)
|-- date: string (nullable = true)
|-- device_id: long (nullable = true)
|-- device_serial_number: string (nullable = true)
|-- device_type: string (nullable = true)
|-- epoch_time_miliseconds: long (nullable = true)
|-- humidity: long (nullable = true)
|-- ip: string (nullable = true)
|-- scale: string (nullable = true)
|-- temp: double (nullable = true)
|-- timestamp: string (nullable = true)

Passing in the schema definition will enforce the stream. AL also provides a

schema enforcement option achieving basically the same results as providing a

static StructType schema-on-read. This method will be covered in Example 7.

1
2

%scala
display(schemaAlDf.limit(10))

89E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

EXAMPLE 5: SCHEMA DRIFT

AL stores new columns and data types via the rescue column. This column

captures schema changes-on-read. The stream does not fail when schema and

data type mismatches are discovered. This is a very impressive feature!

The rescue column preserves schema drift such as newly appended columns

and/or different data types via a JSON string payload. This payload can be

parsed via Spark DataFrame or Dataset APIs to analyze schema drift scenarios.

The source file path for each individual row is also available in the rescue column

to investigate the root cause.

1
2
3
4
5
6
7
8
9

%scala
val driftAlDf = (spark
.readStream.format("cloudfiles")
.option("cloudFiles.format", "json")
.option("cloudFiles.schemaLocation", repoSchemaPath)
.option("cloudFiles.inferColumnTypes", true)
.option("cloudFiles.schemaEvolutionMode", "rescue") // schema drift tracking
.load(rawBasePath + "/*.json")
)

1
2

%scala
driftAlDf.printSchema

1
2

%scala
display(driftAlDf.where("_rescued_data is not null").limit(10))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

root
|-- alarm_status: string (nullable = true)
|-- battery_level: long (nullable = true)
|-- c02_level: long (nullable = true)
|-- cca2: string (nullable = true)
|-- cca3: string (nullable = true)
|-- cn: string (nullable = true)
|-- coordinates: struct (nullable = true)
| |-- latitude: double (nullable = true)
| |-- longitude: double (nullable = true)
|-- date: string (nullable = true)
|-- device_id: long (nullable = true)
|-- device_serial_number: string (nullable = true)
|-- device_type: string (nullable = true)
|-- epoch_time_miliseconds: long (nullable = true)
|-- humidity: long (nullable = true)
|-- ip: string (nullable = true)
|-- scale: string (nullable = true)
|-- temp: double (nullable = true)
|-- timestamp: string (nullable = true)
|-- _rescued_data: string (nullable = true)

90E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/en/ingestion/auto-loader/schema.html#what-is-the-rescued-data-column

EXAMPLE 6: SCHEMA EVOLUTION

AL merges schemas as new columns arrive via schema evolution mode. New

schema JSON will be updated and stored as a new version in the specified

schema repository location.

AL purposely fails the stream with an UnknownFieldException error when it

detects a schema change via dynamic schema inference. The updated schema

instance is created as a new version and metadata file in the schema repository

location, and will be used against the input data after restarting the stream.

1
2
3
4
5
6
7
8
9

%scala
val evolveAlDf = (spark
.readStream.format("cloudfiles")
.option("cloudFiles.format", "json")
.option("cloudFiles.schemaLocation", repoSchemaPath)
.option("cloudFiles.inferColumnTypes", true)
.option("cloudFiles.schemaEvolutionMode", "addNewColumns") // schema evolution
.load(rawBasePath + "/*.json")
)

1
2

%scala
evolveAlDf.printSchema // original schema

1
2

%scala
display(evolveAlDf.limit(10)) // # stream will fail

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

root
|-- alarm_status: string (nullable = true)
|-- battery_level: long (nullable = true)
|-- c02_level: long (nullable = true)
|-- cca2: string (nullable = true)
|-- cca3: string (nullable = true)
|-- cn: string (nullable = true)
|-- coordinates: struct (nullable = true)
| |-- latitude: double (nullable = true)
| |-- longitude: double (nullable = true)
|-- date: string (nullable = true)
|-- device_id: long (nullable = true)
|-- device_serial_number: string (nullable = true)
|-- device_type: string (nullable = true)
|-- epoch_time_miliseconds: long (nullable = true)
|-- humidity: long (nullable = true)
|-- ip: string (nullable = true)
|-- scale: string (nullable = true)
|-- temp: double (nullable = true)
|-- timestamp: string (nullable = true)
|-- _rescued_data: string (nullable = true)

91E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/en/ingestion/auto-loader/schema.html#how-does-auto-loader-schema-evolution-work

1
2
3
4
5
6
7
8
9
10

%scala
val evolveAlDf = (spark
.readStream.format("cloudfiles")
.option("cloudFiles.format", "json")
.option("cloudFiles.schemaLocation", repoSchemaPath)
.option("cloudFiles.inferColumnTypes", true)
.option("cloudFiles.schemaHints", "humidity DOUBLE")
.option("cloudFiles.schemaEvolutionMode", "addNewColumns") // schema evolution
.load(rawBasePath + "/*.json")
)

1
2

%scala
evolveAlDf.printSchema // evolved schema

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

root
|-- alarm_status: string (nullable = true)
|-- battery_level: long (nullable = true)
|-- c02_level: long (nullable = true)
|-- cca2: string (nullable = true)
|-- cca3: string (nullable = true)
|-- cn: string (nullable = true)
|-- coordinates: struct (nullable = true)
| |-- latitude: double (nullable = true)
| |-- longitude: double (nullable = true)
|-- date: string (nullable = true)
|-- device_id: long (nullable = true)
|-- device_serial_number: string (nullable = true)
|-- device_type: string (nullable = true)
|-- epoch_time_miliseconds: long (nullable = true)
|-- humidity: double (nullable = true)
|-- ip: string (nullable = true)
|-- scale: string (nullable = true)
|-- temp: double (nullable = true)
|-- timestamp: string (nullable = true)
|-- device_serial_number_device_type: string (nullable = true)
|-- latitude: double (nullable = true)
|-- location: struct (nullable = true)
| |-- cca2: string (nullable = true)
| |-- cca3: string (nullable = true)
| |-- cn: string (nullable = true)
|-- longitude: double (nullable = true)
|-- _rescued_data: string (nullable = true)

AL has evolved the schema to merge the newly acquired data fields.

1
2

%scala
display(evolveAlDf.where("device_serial_number_device_type is not null").limit(10))

92E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

The newly merged schema transformed by AL is stored in the original schema

repository path as version 1 along with the base version 0 schema. This history is

valuable for tracking changes to schema over time, as well as quickly retrieving

DDL on the fly for schema enforcement.

Schema Repository

Schema evolution can be a messy problem if frequent. With AL and Delta Lake

it becomes easier and simpler to manage. Adding new columns is relatively

straightforward as AL combined with Delta Lake uses schema evolution to

append them to the existing schema. Note: the values for these columns will be

NULL for data already processed. The greater challenge occurs when the data

types change because there will be a type mismatch against the data already

processed. Currently, the "safest" approach is to perform a complete overwrite

of the target Delta table to refresh all data with the changed data type(s).

Depending on the data volume this operation is also relatively straightforward if

infrequent. However, if data types are changing daily/weekly then this operation is

going to be very costly to reprocess large data volumes. This can be an indication

that the business needs to improve their data strategy.

Constantly changing schemas can be a sign of a weak data governance strategy

and lack of communication with the data business owners. Ideally, organizations

should have some kind of SLA for data acquisition and know the expected

schema. Raw data stored in the landing zone should also follow some kind of pre-

ETL strategy (e.g., ontology, taxonomy, partitioning) for better incremental loading

performance into the lakehouse. Skipping these steps can cause a plethora of

data management issues that will negatively impact downstream consumers

building data analytics, BI, and AI/ML pipelines and applications. If upstream

schema and formatting issues are never addressed, downstream pipelines will

consistently break and result in increased cloud storage and compute costs.

Garbage in, garbage out.

Schema Metadata

1
2

%scala
display(dbutils.fs.ls(repoSchemaPath + "/_schemas"))

1
2

%scala
display(spark.read.json(repoSchemaPath + "/_schemas"))

93E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

EXAMPLE 7: SCHEMA ENFORCEMENT

AL validates data against the linked schema version stored in repository location

via schema enforcement mode. Schema enforcement is a schema-on-write

operation, and only ingested data matching the target Delta Lake schema will

be written to output. Any future input schema changes will be ignored, and AL

streams will continue working without failure. Schema enforcement is a very

powerful feature of AL and Delta Lake. It ensures only clean and trusted data will

be inserted into downstream Silver/Gold datasets used for data analytics, BI, and

AI/ML pipelines and applications.

Please note the rescue column is no longer available in this example because

schema enforcement has been enabled. However, a rescue column can still

be configured separately as an AL option if desired. In addition, schema

enforcement mode uses the latest schema version in the repository to enforce

incoming data. For older versions, set a user-defined schema as explained

in Example 4.

1
2
3
4
5
6
7
8
9

%scala
val enforceAlDf = (spark
.readStream.format("cloudfiles")
.option("cloudFiles.format", "json")
.option("cloudFiles.schemaLocation", repoSchemaPath)
.option("cloudFiles.schemaEvolutionMode", "none") // schema enforcement
.schema(jsonSchema)
.load(rawBasePath + "/*.json")
)

1
2

%scala
enforceAlDf.printSchema

1
2

%scala
display(enforceAlDf.limit(10))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

root
|-- alarm_status: string (nullable = true)
|-- battery_level: long (nullable = true)
|-- c02_level: long (nullable = true)
|-- cca2: string (nullable = true)
|-- cca3: string (nullable = true)
|-- cn: string (nullable = true)
|-- coordinates: struct (nullable = true)
| |-- latitude: double (nullable = true)
| |-- longitude: double (nullable = true)
|-- date: string (nullable = true)
|-- device_id: long (nullable = true)
|-- device_serial_number: string (nullable = true)
|-- device_type: string (nullable = true)
|-- epoch_time_miliseconds: long (nullable = true)
|-- humidity: long (nullable = true)
|-- ip: string (nullable = true)
|-- scale: string (nullable = true)
|-- temp: double (nullable = true)
|-- timestamp: string (nullable = true)

94E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

CONCLUSION

At the end of the day, data issues are inevitable. However, the key is to limit data pollution as much as possible and have methods to detect discrepancies, changes

and history via schema management. Databricks Auto Loader provides many solutions for schema management, as illustrated by the examples in this chapter. Having a

solidified data governance and landing zone strategy will make ingestion and streaming easier and more efficient for loading data into the lakehouse. Whether it is simply

converting raw JSON data incrementally to the Bronze layer as Delta Lake format, or having a repository to store schema metadata, AL makes your job easier. It acts as an

anchor to building a resilient lakehouse architecture that provides reusable, consistent, reliable and performant data throughout the data and AI lifecycle.

HTML notebooks (Spark Scala and Spark Python) with code and both sample datasets can be found at the GitHub repo here.

95E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://github.com/thePurplePython/blogs/tree/master/databricks/1

From Idea to Code: Building With the
Databricks SDK for Python
by Kimberly Mahoney

The focus of this chapter is to demystify the Databricks SDK for Python — the

authentication process and the components of the SDK — by walking through the

start-to-end development process. I'll also be showing how to utilize IntelliSense

and the debugger for real-time suggestions in order to reduce the amount of

context-switching from the IDE to documentation and code examples.

What is the Databricks SDK for Python . . . and why you should use it

The Databricks Python SDK lets you interact with the Databricks Platform

programmatically using Python. It covers the entire Databricks API surface and

Databricks REST operations. While you can interact directly with the API via curl

or a library like 'requests' there are benefits to utilizing the SDKs such as:

	■ Secure and simplified authentication via Databricks client-unified

authentication

	■ Built-in debug logging with sensitive information automatically redacted

	■ Support to wait for long-running operations to finish (kicking off a job,

starting a cluster)

	■ Standard iterators for paginated APIs (we have multiple pagination types in

our APIs!)

	■ Retrying on transient errors

There are numerous practical applications, such as building multi-tenant web

applications that interact with your ML models or a robust UC migration toolkit

like Databricks Labs project UCX. Don’t forget the silent workhorses — those

simple utility scripts that are more limited in scope but automate an annoying

task such as bulk updating cluster policies, dynamically adding users to groups

or simply writing data files to UC Volumes. Implementing these types of scripts is

a great way to familiarize yourself with the Python SDK and Databricks APIs.

SCENARIO

Imagine my business is establishing best practices for development and CI/CD

on Databricks. We're adopting DABs to help us define and deploy workflows in

our development and production workspaces, but in the meantime, we need

to audit and clean up our current environments. We have a lot of jobs people

created in our dev workspace via the UI. One of the platform admins observed

many of these jobs are inadvertently configured to run on a recurring schedule,

racking up unintended costs. As part of the cleanup process, we want to identify

any scheduled jobs in our development workspace with an option to pause them.

We’ll need to figure out:

	■ How to install the SDK

	■ How to connect to the Databricks workspace

	■ How to list all the jobs and examine their attributes

	■ How to log the problematic jobs — or a step further, how to call the API to

pause their schedule

96E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.databricks.com/en/dev-tools/sdk-python.html
https://docs.databricks.com/en/dev-tools/auth/index.html#databricks-client-unified-authentication
https://docs.databricks.com/en/dev-tools/auth/index.html#databricks-client-unified-authentication
https://github.com/databrickslabs/ucx
https://docs.databricks.com/en/dev-tools/bundles/index.html

DEVELOPMENT ENVIRONMENT

Before diving into the code, you need to set up your development environment.

I highly recommend using an IDE that has a comprehensive code completion

feature as well as a debugger. Code completion features, such as IntelliSense

in VS Code, are really helpful when learning new libraries or APIs — they provide

useful contextual information, autocompletion, and aid in code navigation.

For this chapter, I’ll be using Visual Studio Code so I can also make use of

the Databricks Extension as well as Pylance. You’ll also need to install the

databricks-sdk (docs). In this chapter, I’m using Poetry + Pyenv. The setup is

similar for other tools — just 'poetry add databricks-sdk' or alternatively 'pip

install databricks-sdk' in your environment.

AUTHENTICATION

The next step is to authorize access to Databricks so we can work with our

workspace. There are several ways to do this, but because I’m using the VS Code

Extension, I’ll take advantage of its authentication integration. It’s one of the tools

that uses unified client authentication — that just means all these development

tools follow the same process and standards for authentication and if you set

up auth for one, you can reuse it among the other tools. I set up both the CLI

and VS Code Extension previously, but here is a primer on setting up the CLI

and installing the extension. Once you’ve connected successfully, you’ll see

a notification banner in the lower right-hand corner and see two hidden files

generated in the .databricks folder — project.json and databricks.env (don’t worry,

the extension also handles adding these to .gitignore).

For this example, while we’re interactively developing in our IDE, we’ll be using

what’s called U2M (user-to-machine) OAuth. We won’t get into the technical

details, but OAuth is a secure protocol that handles authorization to resources

without passing sensitive user credentials such as PAT or username/password

that persist much longer than the one-hour short-lived OAuth token.

OAuth flow for the Databricks Python SDK

97E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance
https://docs.databricks.com/en/dev-tools/sdk-python.html#get-started-with-the-databricks-sdk-for-python&language-Poetry
https://docs.databricks.com/en/dev-tools/auth/index.html#databricks-client-unified-authentication
https://docs.databricks.com/en/dev-tools/cli/install.html
https://docs.databricks.com/en/dev-tools/vscode-ext/install.html

WORKSPACECLIENT VS. ACCOUNTCLIENT

The Databricks API is split into two primary categories — account and workspace.

They let you manage different parts of Databricks, like user access at the

account level or cluster policies in a workspace. The SDK reflects this with two

clients that act as our entry points to the SDK — the WorkspaceClient and

AccountClient. For our example we’ll be working at the workspace level, so I’ll be

initializing the WorkspaceClient. If you're unsure which client to use, check out the

SDK documentation.

Tip: Because we ran the previous steps to authorize access via unified client auth,

the SDK will automatically use the necessary Databricks environment variables,

so there's no need for extra configurations when setting up your client. All we

need are these two lines of code:

	■ Initializing our WorkspaceClient

MAKING API CALLS AND INTERACTING WITH DATA

The WorkspaceClient we instantiated will allow us to interact with different

APIs across the Databricks workspace services. A service is a smaller component

of the Databricks Platform — e.g., Jobs, Compute, Model Registry.

In our example, we’ll need to call the Jobs API in order to retrieve a list of all the

jobs in the workspace.

1

2

from databricks.sdk import WorkspaceClient

w = WorkspaceClient()

Services accessible via the Python SDK

98E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://databricks-sdk-py.readthedocs.io/en/latest/clients.html

This is where IntelliSense really comes in handy. Instead of context switching

between the IDE and the Documentation page, I can use autocomplete to provide

a list of methods as well as examine the method description, the parameters and

return types from within the IDE. I know the first step is getting a list of all the jobs

in the workspace:

You can construct objects with data classes and interact with enums.

For example:

	■ Creating an Employee via Employee DataClass and company departments,

using enums for possible department values

In the Python SDK all of the data classes, enums and APIs belong to the same

module for a service located under databricks.sdk.service — e.g., databricks.

sdk.service.jobs, databricks.sdk.service.billing, databricks.sdk.service.sql.

As you can see, it returns an iterator over an object called BaseJob. Before

we talk about what a BaseJob actually is, it’ll be helpful to understand how data

is used in the SDK. To interact with data you are sending to and receiving from

the API, the Python SDK takes advantage of Python data classes and enums.

The main advantage of this approach over passing around dictionaries is

improved readability while also minimizing errors through enforced type checks

and validations.

1
2
3

4
5
6
7

8
9
10
11
12

13

from dataclasses import dataclass
from enum import Enum
from typing import Optional

class CompanyDepartment(Enum):
 MARKETING = 'MARKETING'
 SALES = 'SALES'
 ENGINEERING = 'ENGINEERING'

@dataclass
class Employee:
 name: str
 email: str
 department: Optional[CompanyDepartment] = None

emp = Employee('Bob', 'bob@company.com', CompanyDepartment.ENGINEERING)

99E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://docs.python.org/3/library/dataclasses.html
https://docs.python.org/3/library/enum.html

For our example, we'll need to loop through all of the jobs and make a decision

on whether or not they should be paused. I'll be using a debugger in order to

look at a few example jobs and get a better understanding of what a ‘BaseJob’

looks like. The Databricks VS Code extension comes with a debugger that can

be used to troubleshoot code issues interactively on Databricks via Databricks

Connect. But, because I do not need to run my code on a cluster, I'll just be using

the standard Python debugger. I'll set a breakpoint inside for my loop and use

the VS Code Debugger to examine a few examples. A breakpoint allows us to

stop code execution and interact with variables during our debugging session.

This is preferable over print statements, as you can use the debugging console

to interact with the data as well as progress the loop. In this example I’m looking

at the settings field and drilling down further in the debugging console to take a

look at what an example job schedule looks like:

We can see a BaseJob has a few top-level attributes and has a more complex

Settings type that contains most of the information we care about. At this

point, we have our WorkspaceClient and are iterating over the jobs in our

workspace. To flag problematic jobs and potentially take some action, we’ll need

to better understand job.settings.schedule. We need to figure out how to

programmatically identify if a job has a schedule and flag if it’s not paused. For

this we’ll be using another handy utility for code navigation — Go to Definition.

I’ve opted to Open Definition to the Side (⌘K F12) in order to reduce switching

to a new window. This will allow us to quickly navigate through the data class

definitions without having to switch to a new window or exit our IDE:

As we can see, a BaseJob contains some top-level fields that are common

among jobs such as 'job_id' or 'created_time'. A job can also have various settings

(JobSettings). These configurations often differ between jobs and encompass

aspects like notification settings, tasks, tags and the schedule. We’ll be focusing

on the schedule field, which is represented by the CronSchedule data class.

CronSchedule contains information about the pause status (PauseStatus) of a

job. PauseStatus in the SDK is represented as an enum with two possible values

— PAUSED and UNPAUSED.

Inspecting BaseJob in the VS Code debugger

100E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://code.visualstudio.com/docs/editor/debugging
https://docs.databricks.com/en/dev-tools/vscode-ext/dev-tasks/databricks-connect.html
https://docs.databricks.com/en/dev-tools/vscode-ext/dev-tasks/databricks-connect.html
https://code.visualstudio.com/docs/python/debugging
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-definition

Tip: VSCode + Pylance provides code suggestions, and you can enable auto

imports in your User Settings or on a per-project basis in Workspace Settings.

By default, only top-level symbols are suggested for auto import and suggested

code (see original GitHub issue). However, the SDK has nested elements we want

to generate suggestions for. We actually need to go down 5 levels — databricks.

sdk.service.jobs.<Enum|Dataclass>. In order to take full advantage of these

features for the SDK, I added a couple of workspace settings:

	■ Selection of theVSCode Workspace settings.json

Putting it all together:
I broke out the policy logic into its own function for unit testing, added some

logging and expanded the example to check for any jobs tagged as an exception

to our policy. Now we have:

	■ Logging out of policy jobs

1
2
3
4
5
6
7
8
9
10
11

...
 "python.analysis.autoImportCompletions": true,
 "python.analysis.indexing": true,
 "python.analysis.packageIndexDepths": [
{
 "name": "databricks",
 "depth": 5,
 "includeAllSymbols": true
 }
]
...

1

2
3

4
5

6
7
8
9
10
11
12
13

14
15

16
17
18
19
20

21
22
23

24

25
26
27
28
29

30
31
32
33
34

import logging

from databricks.sdk import WorkspaceClient
from databricks.sdk.service.jobs import CronSchedule, JobSettings, PauseStatus

Initialize WorkspaceClient
w = WorkspaceClient()

def update_new_settings(job_id, quarts_cron_expression, timezone_id):
 """Update out of policy job schedules to be paused"""
 new_schedule = CronSchedule(
 quartz_cron_expression=quarts_cron_expression,
 timezone_id=timezone_id,
 pause_status=PauseStatus.PAUSED,
)
 new_settings = JobSettings(schedule=new_schedule)

 logging.info(f"Job id: {job_id}, new_settings: {new_settings}")
 w.jobs.update(job_id, new_settings=new_settings)

def out_of_policy(job_settings: JobSettings):
 """Check if a job is out of policy.
 If it unpaused and has a schedule and is not tagged as keep_alive
 Return true if out of policy, false if in policy
 """

 tagged = bool(job_settings.tags)
 proper_tags = tagged and "keep_alive" in job_settings.tags
 paused = job_settings.schedule.pause_status is PauseStatus.PAUSED

 return not paused and not proper_tags

all_jobs = w.jobs.list()
for job in all_jobs:
 job_id = job.job_id
 if job.settings.schedule and out_of_policy(job.settings):
 schedule = job.settings.schedule

 logging.info(
 f"Job name: {job.settings.name}, Job id: {job_id}, creator: {job.creator_
user_name}, schedule: {schedule}"
)
	

101E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://code.visualstudio.com/docs/getstarted/settings
https://github.com/microsoft/pylance-release/issues/2533#issuecomment-1089268739

Now we have not only a working example but also a great foundation for building

out a generalized job monitoring tool. We're successfully connecting to our

workspace, listing all the jobs and analyzing their settings, and, when we're ready,

we can simply call our `update_new_settings functioǹ to apply the new paused

schedule. It's fairly straightforward to expand this to meet other requirements

you may want to set for a workspace — for example, swap job owners to service

principles, add tags, edit notifications or audit job permissions. See the example

in the GitHub repository.

SCHEDULING A JOB ON DATABRICKS

You can run your script anywhere, but you may want to schedule scripts that use

the SDK to run as a Databricks Workflow or job on a small single-node cluster.

When running a Python notebook interactively or via automated workflow, you

can take advantage of default Databricks Notebook authentication. If you're

working with the Databricks WorkspaceClient and your cluster meets the

requirements listed in the docs, you can initialize your WorkspaceClient without

needing to specify any other configuration options or environment variables — it

works automatically out of the box.

102E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://github.com/kimberlyma/dev-job-monitoring
https://docs.databricks.com/en/dev-tools/sdk-python.html#use-the-databricks-sdk-for-python-from-a-databricks-notebook

CONCLUSION

In conclusion, the Databricks SDKs offer limitless potential for a variety of

applications. We saw how the Databricks SDK for Python can be used to

automate a simple yet crucial maintenance task and also saw an example

of an OSS project that uses the Python SDK to integrate with the Databricks

Platform. Regardless of the application you want to build, the SDKs streamline

development for the Databricks Platform and allow you to focus on your

particular use case. The key to quickly mastering a new SDK such as the

Databricks Python SDK is setting up a proper development environment.

Developing in an IDE allows you to take advantage of features such as a debugger,

parameter info and code completion, so you can quickly navigate and familiarize

yourself with the codebase. Visual Studio Code is a great choice for this as it

provides the above capabilities and you can utilize the VSCode extension for

Databricks to benefit from unified authentication.

Any feedback is greatly appreciated and welcome. Please raise any issues in the

Python SDK GitHub repository. Happy developing!

ADDITIONAL RESOURCES

	■ Databricks SDK for Python Documentation

	■ DAIS Presentation: Unlocking the Power of Databricks SDKs

	■ How to install Python libraries in your local development environment:

How to Create and Use Virtual Environments in Python With Poetry

	■ Installing the Databricks Extension for Visual Studio Code

103E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://github.com/databricks/databricks-sdk-py
https://databricks-sdk-py.readthedocs.io/en/latest/
https://www.youtube.com/watch?v=HWKJV_cRT9M
https://www.youtube.com/watch?v=0f3moPe_bhk
https://docs.databricks.com/en/dev-tools/vscode-ext/install.html

104E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

03 Ready-to-Use Notebooks
and Datasets

E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

Databricks Solution Accelerators

Additional Solution Accelerators with ready-to-use notebooks can be found here:

This section includes several Solution Accelerators — free, ready-to-use
examples of data solutions from different industries ranging from retail to
manufacturing and healthcare. Each of the following scenarios includes
notebooks with code and step-by-step instructions to help you get started.
Get hands-on experience with the Databricks Data Intelligence Platform by
trying the following for yourself:

Overall Equipment
Effectiveness
Ingest equipment sensor data for
metric generation and data-driven
decision-making

Explore the Solution

Real-Time Point-of-Sale
Analytics
Calculate current inventories for
various products across multiple store
locations with Delta Live Tables

Explore the Solution

Explore the Solution

Digital Twins
Leverage digital twins — virtual
representations of devices and
objects — to optimize operations
and gain insights

Explore the Solution

Recommendation Engines
for Personalization
Improve customers’ user experience
and conversion with personalized
recommendations

Explore the Solution

Understanding Price
Transparency Data
Efficiently ingest large healthcare
datasets to create price transparency for
better understanding of healthcare costs

105E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/solutions/accelerators
https://www.databricks.com/solutions/accelerators
https://www.databricks.com/solutions/accelerators/overall-equipment-effectiveness
https://www.databricks.com/solutions/accelerators/overall-equipment-effectiveness
https://www.databricks.com/solutions/accelerators/real-time-point-of-sale-analytics
https://www.databricks.com/solutions/accelerators/overall-equipment-effectiveness
https://databricks.com/solutions/accelerators/digital-twins
https://www.databricks.com/solutions/accelerators/overall-equipment-effectiveness
https://www.databricks.com/solutions/accelerators/recommendation-engines
https://www.databricks.com/solutions/accelerators/overall-equipment-effectiveness
https://www.databricks.com/solutions/accelerators/price-transparency-data
https://www.databricks.com/solutions/accelerators/overall-equipment-effectiveness

106E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

04 Case Studies

E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

Cox Automotive — changing the way the world buys, sells and
uses vehicles

“We use Databricks Workflows as our default orchestration tool to perform ETL and enable
automation for about 300 jobs, of which approximately 120 are scheduled to run regularly.”

— Robert Hamlet, Lead Data Engineer, Enterprise Data Services, Cox Automotive

Cox Automotive Europe is part of Cox Automotive, the world’s largest automotive service organization, and is on a mission to

transform the way the world buys, sells, owns and uses vehicles. They work in partnership with automotive manufacturers,

fleets and retailers to improve performance and profitability throughout the vehicle lifecycle. Their businesses are organized

around their customers’ core needs across vehicle solutions, remarketing, funding, retail and mobility. Their brands in Europe

include Manheim, Dealer Auction, NextGear Capital, Modix and Codeweavers.

Cox’s enterprise data services team recently built a platform to consolidate the company’s data and enable their data

scientists to create new data-driven products and services more quickly and easily. To enable their small engineering team

to unify data and analytics on one platform while enabling orchestration and governance, the enterprise data services team

turned to the Databricks Data Intelligence Platform, Workflows, Unity Catalog and Delta Sharing.

107E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

I N D U S T R Y
Automotive

S O L U T I O N

Data-Driven ESG, Customer Entity
Resolution, Demand Forecasting,
Product Matching

P L A T F O R M

Workflows, Unity Catalog, Delta
Sharing, ETL

C L O U D

Azure

https://www.databricks.com/solutions/industries/manufacturing-industry-solutions
https://www.databricks.com/solutions/industries/telco-industry-solutions
https://www.databricks.com/solutions/accelerators/esg
https://www.databricks.com/solutions/accelerators/customer-entity-resolution
https://www.databricks.com/solutions/accelerators/customer-entity-resolution
https://www.databricks.com/solutions/accelerators/demand-forecasting
https://www.databricks.com/solutions/accelerators/product-matching-with-ml
https://www.databricks.com/product/workflows
https://www.databricks.com/product/unity-catalog
https://www.databricks.com/product/delta-sharing
https://www.databricks.com/product/delta-sharing
https://www.databricks.com/solutions/data-engineering
https://www.databricks.com/product/azure

EASY ORCHESTRATION AND OBSERVABILIT Y IMPROVE
ABILIT Y TO DELIVER VALUE

Cox Automotive’s enterprise data services team maintains a data platform that

primarily serves internal customers spanning across business units, though they

also maintain a few data feeds to third parties. The enterprise data services

team collects data from multiple internal sources and business units. “We use

Databricks Workflows as our default orchestration tool to perform ETL and enable

automation for about 300 jobs, of which approximately 120 are scheduled to run

regularly,” says Robert Hamlet, Lead Data Engineer, Enterprise Data Services,

at Cox Automotive.

Jobs may be conducted weekly, daily or hourly. The amount of data processed

in production pipelines today is approximately 720GB per day. Scheduled jobs

pull from different areas both within and outside of the company. Hamlet uses

Databricks Workflows to deliver data to the data science team, to the in-house

data reporting team through Tableau, or directly into Power BI. “Databricks

Workflows has a great user interface that allows you to quickly schedule any

type of workflow, be it a notebook or JAR,” says Hamlet. “Parametrization

has been especially useful. It gives us clues as to how we can move jobs

across environments. Workflows has all the features you would want from an

orchestrator.”

Hamlet also likes that Workflows provides observability into every workflow run

and failure notifications so they can get ahead of issues quickly and troubleshoot

before the data science team is impacted. “We use the job notifications feature

to send failure notifications to a webhook, which is linked to our Microsoft Teams

account,” he says. “If we receive an alert, we go into Databricks to see what's

going on. It’s very useful to be able to peel into the run logs and see what errors

occurred. And the Repair Run feature is nice to remove blemishes from your

perfect history.”

UNIT Y CATALOG AND DELTA SHARING IMPROVE DATA
ACCESS ACROSS TEAMS

Hamlet’s team recently began using Unity Catalog to manage data access,

improving their existing method, which lacked granularity and was difficult to

manage. “With our new workspace, we're trying to use more DevOps principles,

infrastructure-as-code and groups wherever possible,” he says. “I want to easily

manage access to a wide range of data to multiple different groups and entities,

and I want it to be as simple as possible for my team to do so. Unity Catalog is

the answer to that.”

The enterprise data services team also uses Delta Sharing, which natively

integrates with Unity Catalog and allows Cox to centrally manage and audit

shared data outside the enterprise data services team while ensuring robust

security and governance. “Delta Sharing makes it easy to securely share data

with business units and subsidiaries without copying or replicating it,” says

Hamlet. “It enables us to share data without the recipient having an identity in our

workspace.”

108E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

LOOKING AHEAD: INCORPORATING ADDITIONAL DATA INTELLIGENCE PLATFORM CAPABILITIES

Going forward, Hamlet plans to use Delta Live Tables (DLT) to make it easy to build and manage batch and streaming data pipelines that deliver data on the Databricks

Data Intelligence Platform. DLT will help data engineering teams simplify ETL development and management. Eventually, Hamlet may also use Delta Sharing to easily

share data securely with external suppliers and partners while meeting security and compliance needs. “DLT provides us an opportunity to make it simpler for our team.

Scheduling Delta Live Tables will be another place we’ll use Workflows,” he says.

Hamlet is also looking forward to using the data lineage capabilities within Unity Catalog to provide his team with an end-to-end view of how data flows in the lakehouse

for data compliance requirements and impact analysis of data changes. “That’s a feature I'm excited about,” Hamlet says. “Eventually, I hope we get to a point where we

have all our data in the lakehouse, and we get to make better use of the tight integrations with things like data lineage and advanced permissions management.”

109E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

Block — building a world-class data platform

Block is a global technology company that champions accessible financial services and prioritizes economic empowerment.

Its subsidiaries, including Square, Cash App and TIDAL, are committed to expanding economic access. By utilizing artificial

intelligence (AI) and machine learning (ML), Block proactively identifies and prevents fraud, ensuring secure customer

transactions in real time. In addition, Block enhances user experiences by delivering personalized recommendations and using

identity resolution to gain a comprehensive understanding of customer activities across its diverse services. Internally, Block

optimizes operations through automation and predictive analytics, driving efficiency in financial service delivery. Block uses

the Data Intelligence Platform to bolster its capabilities, consolidating and streamlining its data, AI and analytics workloads.

This strategic move positions Block for the forthcoming automation-driven innovation shift and solidifies its position as a

pioneer in AI-driven financial services.

Block standardizes on Delta Live Tables to expand
secure economic access for millions

I N D U S T R Y
Financial Services

P L A T F O R M

Delta Live Tables, Data Streaming,
Machine Learning, ETL

C L O U D

AWS

90%
Improvement in
development velocity

150
Pipelines being onboarded in
addition to the 10 running daily

110E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/solutions/industries/financial-services
https://www.databricks.com/solutions/industries/telco-industry-solutions
https://www.databricks.com/product/delta-live-tables
https://www.databricks.com/product/data-streaming
https://www.databricks.com/product/machine-learning
https://www.databricks.com/product/aws

ENABLING CHANGE DATA CAPTURE FOR STREAMING
DATA EVENTS ON DELTA LAKE

Block’s Data Foundations team is dedicated to helping its internal customers

aggregate, orchestrate and publish data at scale across the company’s

distributed system to support business use cases such as fraud detection,

payment risk evaluation and real-time loan decisions. The team needs access

to high-quality, low-latency data to enable fast, data-driven decisions and

reactions.

Block had been consolidating on Kafka for data ingestion and Delta Lake for data

storage. More recently, the company sought to make real-time streaming data

available in Delta Lake as Silver (cleansed and conformed) data for analytics

and machine learning. It also wanted to support event updates and simple data

transformations and enable data quality checks to ensure higher-quality data.

To accomplish this, Block considered a few alternatives, including the Confluent-

managed Databricks Delta Lake Sink connector, a fully managed solution with

low latency. However, that solution did not offer change data capture support

and had limited transformation and data quality check support. The team also

considered building their own solution with Spark Structured Streaming, which

also provided low latency and strong data transformation capabilities. But that

solution required the team to maintain significant code to define task workflows,

change data and capture logic. They’d also have to implement their own data

quality checks and maintenance jobs.

LEVERAGING THE LAKEHOUSE TO SYNC K AFK A STREAMS
TO DELTA TABLES IN REAL TIME

Rather than redeveloping its data pipelines and applications on new, complex,

proprietary and disjointed technology stacks, Block turned to the Data

Intelligence Platform and Delta Live Tables (DLT) for change data capture and

to enable the development of end-to-end, scalable streaming pipelines and

applications. DLT pipelines simply orchestrate the way data flows between Delta

tables for ETL jobs, requiring only a few lines of declarative code. It automates

much of the operational complexity associated with running ETL pipelines and,

as such, comes with preselected smart defaults yet is also tunable, enabling

the team to optimize and debug easily. “DLT offers declarative syntax to define

a pipeline, and we believed it could greatly improve our development velocity,”

says Yue Zhang, Staff Software Engineer for the Data Foundations team at Block.

“It’s also a managed solution, so it manages the maintenance tasks for us, it

has data quality support, and it has advanced, efficient autoscaling and Unity

Catalog integration.”

Today, Block’s Data Foundations team ingests events from internal services in

Kafka topics. A DLT pipeline consumes those events into a Bronze (raw data)

table in real time, and they use the DLT API to apply changes and merge data

into a higher-quality Silver table. The Silver table can then be used by other

DLT pipelines for model training, to schedule model orchestration, or to define

features for a features store. “It’s very straightforward to implement and build

DLT pipelines,” says Zhang.

111E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/product/delta-live-tables
https://www.databricks.com/blog/2022/12/08/build-reliable-and-cost-effective-streaming-data-pipelines.html
https://www.databricks.com/blog/build-governed-pipelines-delta-live-tables-and-unity-catalog
https://www.databricks.com/blog/build-governed-pipelines-delta-live-tables-and-unity-catalog

The Block Data Foundations team’s streaming data architecture with Delta Live

Tables pipelines

Using the Python API to define a pipeline requires three steps: a row table, a

Silver table and a merge process. The first step is to define the row table. Block

consumes events from Kafka, performs some simple transformations, and

establishes the data quality check and its rule. The goal is to ensure all events

have a valid event ID.

The next step is to define the Silver table or target table, its storage location

and how it is partitioned. With those tables defined, the team then determines

the merge logic. Using the DLT API, they simply select APPLY CHANGES INTO. If

two units have the same event ID, DLT will choose the one with the latest ingest

timestamp. “That’s all the code you need to write,” says Zhang.

Finally, the team defines basic configuration settings from the DLT UI, such

as characterizing clusters and whether the pipeline will run in continuous or

triggered modes.

Following their initial DLT proof of concept, Zhang and his team implemented

CI/CD to make DLT pipelines more accessible to internal Block teams. Different

teams can now manage pipeline implementations and settings in their own repos,

and, once they merge, simply use the Databricks pipelines API to create, update

and delete those pipelines in the CI/CD process.

BOOSTING DEVELOPMENT VELOCIT Y WITH DLT

Implementing DLT has been a game-changer for Block, enabling it to boost

development velocity. “With the adoption of Delta Live Tables, the time

required to define and develop a streaming pipeline has gone from days

to hours,” says Zhang.

Meanwhile, managed maintenance tasks have resulted in better query

performance, improved data quality has boosted customer trust, and more

efficient autoscaling has improved cost efficiency. Access to fresh data means

Block data analysts get more timely signals for analytics and decision-making,

while Unity Catalog integration means they can better streamline and automate

data governance processes. “Before we had support for Unity Catalog, we had

to use a separate process and pipeline to stream data into S3 storage and

a different process to create a data table out of it,” says Zhang. “With Unity

Catalog integration, we can streamline, create and manage tables from the DLT

pipeline directly.”

Block is currently running approximately 10 DLT pipelines daily, with about

two terabytes of data flowing through them, and has another 150 pipelines to

onboard. “Going forward, we’re excited to see the bigger impacts DLT can offer

us,” adds Zhang.

112E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/blog/2022/04/25/simplifying-change-data-capture-with-databricks-delta-live-tables.html
https://www.databricks.com/blog/applying-software-development-devops-best-practices-delta-live-table-pipelines

Trek — global bicycle leader accelerates retail analytics

“How do you scale up analytics without blowing a hole in your technology budget? For us,
the clear answer was to run all our workloads on Databricks Data Intelligence Platform and
replicate our data in near real-time with Qlik.”

— Garrett Baltzer, Software Architect, Data Engineering, Trek Bicycle

Trek Bicycle started in a small Wisconsin barn in 1976, but their founders always saw something bigger. Decades later, the

company is on a mission to make the world a better place to live and ride. Trek only builds products they love and provides

incredible hospitality to customers as they aim to change the world for the better by getting more people on bikes. Frustrated

by the rising costs and slow performance of their data warehouse, Trek migrated to Databricks Data Intelligence Platform. The

company now uses Qlik to replicate their ERP data to Databricks in near real-time and stores data in Delta Lake tables. With

Databricks and Qlik, Trek has dramatically accelerated their retail analytics to provide a better experience for their customers

with a unified view of the global business to their data consumers, including business and IT users.

I N D U S T R Y
Retail and Consumer Goods

S O L U T I O N
Real-Time Point-of-Sale Analytics

P L A T F O R M

Delta Lake, Databricks SQL, Delta
Live Tables, Data Streaming

P A R T N E R

Qlik

C L O U D

Azure

80%-90%
Acceleration in runtime of retail
analytics solution globally

3X
Increase in daily data
refreshes on Databricks

1 Week
Reduction in ERP data replication,
which now happens in near real time

113E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/solutions/industries/retail-industry-solutions
https://www.databricks.com/solutions/accelerators/real-time-point-of-sale-analytics
https://www.databricks.com/solutions/industries/telco-industry-solutions
https://www.databricks.com/product/delta-lake-on-databricks
https://www.databricks.com/product/databricks-sql
https://www.databricks.com/product/delta-live-tables
https://www.databricks.com/product/delta-live-tables
https://www.databricks.com/product/data-streaming
https://www.qlik.com/us/products/technology/databricks
https://www.databricks.com/product/azure

SLOW DATA PROCESSING HINDERS RETAIL ANALY TICS

As Trek Bicycle works to make the world better by encouraging more people to

ride bikes, the company keeps a close eye on what’s happening in their hundreds

of retail stores. But until recently, running analytics on their retail data proved

challenging because Trek relied on a data warehouse that couldn’t scale cost-

effectively.

“The more stores we added, the more information we added to our processes

and solutions,” explained Garrett Baltzer, Software Architect, Data Engineering,

at Trek Bicycle. “Although our data warehouse did scale to support greater data

volumes, our processing costs were skyrocketing, and processes were taking far

too long. Some of our solutions were taking over 30 hours to produce analytics,

which is unacceptable from a business perspective.”

Adding to the challenge, Trek’s data infrastructure hindered the company’s

efforts to achieve a global view of their business performance. Slow processing

speeds meant Trek could only process data once per day for one region at a

time.

“We were processing retail data separately for our North American, European

and Asia-Pacific stores, which meant everyone downstream had to wait for

actionable insights for different use cases,” recalled Advait Raje, Team Lead, Data

Engineering, at Trek Bicycle. “We soon made it a priority to migrate to a unified

data platform that would produce analytics more quickly and at a lower cost.”

DELTA LAKE UNIFIES RETAIL DATA FROM AROUND
THE GLOBE

Seeking to modernize their data infrastructure to speed up data processing

and unify all their data from global sources, Trek started migrating to the

Databricks Data Intelligence Platform in 2019. The company’s processing speeds

immediately increased. Qlik’s integration with the Databricks Data Intelligence

Platform helps feed Trek’s lakehouse. This replication allows Trek to build a wide

range of valuable data products for their sales and customer service teams.

“Qlik enabled us to move relevant ERP data into Databricks where we don’t have

to worry about scaling vertically because it automatically scales parallel. Since

70 to 80% of our operational data comes from our ERP system, Qlik has made it

possible to get far more out of our ERP data without increasing our costs,” Baltzer

explained.

Trek is now running all their retail analytics workloads in the Databricks Data

Intelligence Platform. Today, Trek uses the Databricks Data Intelligence Platform

to collect point-of-sale data from nearly 450 stores around the globe. All

computation happens on top of Trek’s lakehouse. The company runs a semantic

layer on top of this lakehouse to power everything from strategic high-level

reporting for C-level executives to daily sales and operations reports for

individual store employees.

“Databricks Data Intelligence Platform has been a game-changer for Trek,” said

Raje. “With Qlik Cloud Data Integration on Databricks, it became possible to

replicate relevant ERP data to our Databricks in real time, which made it far more

accessible for downstream retail analytics. Suddenly, all our data from multiple

repositories was available in one place, enabling us to reduce costs and deliver

on business needs much more quickly.”

114E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

Trek’s BI and data analysts leverage Databricks SQL, their serverless data

warehouse, for ad hoc analysis to answer business questions much more quickly.

Internal customers can leverage Power BI connecting directly to Databricks to

consume retail analytics data from Gold tables. This ease of analysis helps the

company monitor and enhance their Net Promoter Scores. Trek uses Structured

Streaming and Auto Loader functionality within Delta Live Tables to transform the

data from Bronze to Silver or Gold, according to the medallion architecture.

“Delta Live Tables have greatly accelerated our development velocity,” Raje

reported. “In the past, we had to use complicated ETL processes to take data

from raw to parsed. Today, we just have one simple notebook that does it, and

then we use Delta Live Tables to transform the data to Silver or Gold as needed.”

DATA INTELLIGENCE PLATFORM ACCELERATES
ANALY TICS BY 80% TO 90%

By moving their data processing to the Databricks Data Intelligence Platform

and integrating data with Qlik, Trek has dramatically increased the speed of their

processing and overall availability of data. Prior to implementing Qlik, they had

a custom program that, once a week, on a Sunday, replicated Trek’s ERP data

from on-premises servers to a data lake using bulk copies. Using Qlik, Trek now

replicates relevant data from their ERP system as Delta tables directly in their

lakehouse.

“We used to work with stale ERP data all week because replication only happened

on Sundays,” Raje remarked. “Now we have a nearly up-to-the-minute view of

what’s going on in our business. That’s because Qlik lets us keep replicating

through the day, streaming data from ERP into our lakehouse.”

Trek’s retail analytics solution used to take 48+ hours to produce meaningful

results. Today, Trek runs the solution on the Databricks Data Intelligence Platform

to get results in six to eight hours — an 80 to 90% improvement, thus allowing

daily runs. A complementary retail analytics solution went from 12–14 hours down

to under 4–5 hours, thereby enabling the lakehouse to refresh three times per

day, compared to only once a day previously.

“Before Databricks, we had to run our retail analytics once a day on North

American time, which meant our other regions got their data late,” said Raje.

“Now, we refresh the lakehouse three times per day, one for each region, and

stakeholders receive fresh data in time to drive their decisions. Based on the

results we’ve achieved in the lakehouse, we’re taking a Databricks-first approach

to all our new projects. We’re even migrating many of our on-premises BI

solutions to Databricks because we’re all-in on the lakehouse.”

“Databricks Data Intelligence Platform, along with data replication to Databricks

using Qlik, aligns perfectly with our broader cloud-first strategy,” said Steve

Novoselac, Vice President, IT and Digital, at Trek Bicycle. “This demonstrates

confidence in the adoption of this platform at Trek.”

115E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/product/databricks-sql

Coastal Community Bank — mastering the modern data platform
for exponential growth

“We’ve done two years’ worth of work here in nine months. Databricks enables access to
a single source of truth and our ability to process high volumes of transactions that gives
us confidence we can drive our growth as a community bank and a leading banking-as-a-
service provider.”

— Curt Queyrouze, President, Coastal Community Bank

Many banks continue to rely on decades-old, mainframe-based platforms to support their back-end operations. But banks

that are modernizing their IT infrastructures and integrating the cloud to share data securely and seamlessly are finding they

can form an increasingly interconnected financial services landscape. This has created opportunities for community banks,

fintechs and brands to collaborate and offer customers more comprehensive and personalized services. Coastal Community

Bank is headquartered in Everett, Washington, far from some of the world’s largest financial centers. The bank’s CCBX division

offers banking as a service (BaaS) to financial technology companies and broker-dealers. To provide personalized financial

products, better risk oversight, reporting and compliance, Coastal turned to the Databricks Data Intelligence Platform and

Delta Sharing, an open protocol for secure data sharing, to enable them to share data with their partners while ensuring

compliance in a highly regulated industry.

I N D U S T R Y
Financial Services

S O L U T I O N
Financial Crimes Compliance,
Customer Profile Scoring, Financial
Reconciliation, Credit Risk
Reporting, Synthesizing Multiple
Data Sources, Data Sharing and
Collaboration

P L A T F O R M

Delta Lake, ETL, Delta Sharing, Data
Streaming, Databricks SQL

C L O U D

Azure

< 10
Minutes to securely share large
datasets across organizations

99%
Decrease in processing
duration (2+ days to 30 min.)

12X
Faster partner onboarding by
eliminating sharing complexity

116E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/solutions/industries/financial-services
https://www.databricks.com/solutions/industries/telco-industry-solutions
https://www.databricks.com/product/delta-lake-on-databricks
https://www.databricks.com/solutions/data-engineering
https://www.databricks.com/product/delta-sharing
https://www.databricks.com/product/data-streaming
https://www.databricks.com/product/data-streaming
https://www.databricks.com/product/databricks-sql
https://www.databricks.com/product/azure

LEVERAGING TECH AND INNOVATION TO FUTURE-PROOF
A COMMUNIT Y BANK

Coastal Community Bank was founded in 1997 as a traditional brick-and-mortar

bank. Over the years, they grew to 14 full-service branches in Washington state

offering lending and deposit products to approximately 40,000 customers.

In 2018, the bank’s leadership broadened their vision and long-term growth

objectives, including how to scale and serve customers outside their traditional

physical footprint. Coastal leaders took an innovative step and launched a plan

to offer BaaS through CCBX, enabling a broad network of virtual partners and

allowing the bank to scale much faster and further than they could via their

physical branches alone.

Coastal hired Barb MacLean, Senior Vice President and Head of Technology

Operations and Implementation, to build the technical foundation required

to help support the continued growth of the bank. “Most small community

banks have little technology capability of their own and often outsource tech

capabilities to a core banking vendor,” says MacLean. “We knew that story had

to be completely different for us to continue to be an attractive banking-as-a-

service partner to outside organizations.”

To accomplish their objectives, Coastal would be required to receive and send

vast amounts of data in near real-time with their partners, third parties and the

variety of systems used across that ecosystem. This proved to be a challenge

as most banks and providers still relied on legacy technologies and antiquated

processes like once-a-day batch processing. To scale their BaaS offering, Coastal

needed a better way to manage and share data. They also required a solution

that could scale while ensuring that the highest levels of security, privacy and

strict compliance requirements were met. “The list of things we have to do to

prove that we can safely and soundly operate as a regulated financial institution

is ever-increasing,” says MacLean. “As we added more customers and therefore

more customer information, we needed to scale safely through automation.”

Coastal also needed to accomplish all this with their existing small team. “As

a community bank, we can’t compete on a people basis, so we have to have

technology tools in place that teams can learn easily and deploy quickly,”

adds MacLean.

TACKLING A COMPLEX DATA ENVIRONMENT WITH
DELTA SHARING

With the goal of having a more collaborative approach to community banking

and banking as a service, Coastal began their BaaS journey in January 2023 when

they chose Cavallo Technologies to help them develop a modern, future-proof

data platform to support their stringent customer data sharing and compliance

requirements. This included tackling infrastructure challenges, such as data

ingestion complexity, speed, data quality and scalability. “We wanted to use our

small, nimble team to our advantage and find the right technology to help us

move fast and do this right,” says MacLean.

117E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

“We initially tested several vendors, however learned through those tests we

needed a system that could scale for our needs going forward,” says MacLean.

Though very few members of the team had used Databricks before, Coastal

decided to move from a previously known implementation pattern and a data

lake–based platform to a lakehouse approach with Databricks. The lakehouse

architecture addressed the pain points they experienced using a data lake–

based platform, such as trying to sync batch and streaming data. The dynamic

nature and changing environments of Coastal’s partners required handling

changes to data structure and content. The Databricks Data Intelligence Platform

provided resiliency and tooling to deal with both data and schema drift cost-

effectively at scale.

Coastal continued to evolve and extend their use of Databricks tools, including

Auto Loader, Structured Streaming, Delta Live Tables, Unity Catalog and

Databricks repos for CI/CD, as they created a robust software engineering

practice for data at the bank. Applying software engineering principles to data

can often be neglected or ignored by engineering teams, but Coastal knew that

it was critical to managing the scale and complexity of the internal and external

environment in which they were working. This included having segregated

environments for development, testing and production, having technical leaders

approve the promotion of code between environments, and include data privacy

and security governance.

Coastal also liked that Databricks worked well with Azure out of the box.

And because it offered a consolidated toolkit for data transformation and

engineering, Databricks helped address any risk concerns. “When you have a

highly complex technical environment with a myriad of tools, not only inside

your own environment but in our partners’ environments that we don’t control,

a consolidated toolkit reduces complexity and thereby reduces risk,”

says MacLean.

Initially, MacLean’s team evaluated several cloud-native solutions, with the goal

of moving away from a 24-hour batch world and into real-time data processing

since any incident could have wider reverberations in a highly interconnected

financial system. “We have all these places where data is moving in real time.

What happens when someone else’s system has an outage or goes down in the

middle of the day? How do you understand customer and bank exposure as soon

as it happens? How do we connect the batch world with the real-time world? We

were trapped in a no-man’s-land of legacy, batch-driven systems, and partners

are too,” explains MacLean.

“We wanted to be a part of a community of users, knowing that was the future,

and wanted a vendor that was continually innovating,” says MacLean. Similarly,

MacLean’s team evaluated the different platforms for ETL, BI, analytics and data

science, including some already in use by the bank. “Engineers want to work with

modern tools because it makes their lives easier … working within the century in

which you live. We didn’t want to Frankenstein things because of a wide toolset,”

says MacLean. “Reducing complexity in our environment is a key consideration,

so using a single platform has a massive positive impact. Databricks is the hands-

down winner in apples-to-apples comparisons to other tools like Snowflake and

SAS in terms of performance, scalability, flexibility and cost.”

MacLean explained that Databricks included everything, such as Auto Loader,

repositories, monitoring and telemetry, and cost management. This enabled the

bank to benefit from robust software engineering practices so they could scale

to serving millions of customers, whether directly or via their partner network.

MacLean explained, “We punch above our weight, and our team is extremely

small relative to what we’re doing, so we wanted to pick the tools that are

applicable to any and all scenarios.”

118E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

The Databricks Data Intelligence Platform has greatly simplified how Coastal and

their vast ecosystem of financial service partners securely share data across

data platforms, clouds or regions.

IMPROVING TIME TO VALUE AND GROWING THEIR
PARTNER NETWORK

In the short time since Coastal launched CCBX, it has become the bank’s primary

customer acquisition and growth division, enabling them to grow BaaS program

fee income by 32.3% year over year. Their use of Databricks has also helped them

achieve unprecedented time to value. “We’ve done two years’ worth of work here

in nine months,” says Curt Queyrouze, President at Coastal.

Almost immediately, Coastal saw exponential improvements in core business

functions. “Activities within our risk and compliance team that we need to

conduct every few months would take 48 hours to execute with legacy inputs,”

says MacLean. “Now we can run those in 30 minutes using near real-time data.”

Despite managing myriad technology systems, Databricks helps Coastal remove

barriers between teams, enabling them to share live data with each other safely

and securely in a matter of minutes so the bank can continue to grow quickly

through partner acquisition. “The financial services industry is still heavily reliant

on legacy, batch-driven systems, and other data is moving in real time and

needs to be understood in real time. How do we marry those up?” asks MacLean.

“That was one of the fundamental reasons for choosing Databricks. We have not

worked with any other tool or technology that allows us to do that well.”

119E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

With Delta Sharing on Databricks, Coastal now has a vastly simplified, faster

and more secure platform for onboarding new partners and their data. “When

we want to launch and grow a product with a partner, such as a point-of-sale

consumer loan, the owner of the data would need to send massive datasets

on tens of thousands of customers. Before, in the traditional data warehouse

approach, this would typically take one to two months to ingest new data

sources, as the schema of the sent data would need to be changed in order for

our systems to read it. But now we point Databricks at it and it’s just two days to

value,” shares MacLean.

While Coastal’s data engineers and business users love this improvement in

internal productivity, the larger transformation has been how Databricks has

enabled Coastal’s strategy to focus on building a rich partner network. They now

have about 20 partners leveraging different aspects of Coastal’s BaaS.

Recently, Coastal’s CEO had an ask about a specific dataset. Based on

experience from their previous data tools, they brought in a team of 10 data

engineers to comb through the data, expecting this to be a multiday or even

multi-week effort. But when they actually got into their Databricks Data

Intelligence Platform, using data lineage on Unity Catalog, they were able to

give a definitive answer that same afternoon. MacLean explains that this is not

an anomaly. “Time and time again, we find that even for the most seemingly

challenging questions, we can grab a data engineer with no context on the data,

point them to a data pipeline and quickly get the answers we need.”

CCBX leverages the power and scale of a network of partners. Delta Sharing uses

an open source approach to data sharing and enables users to share live data

across platforms, clouds and regions with strong security and governance. Using

Delta Sharing meant Coastal could manage data effectively even when working

with partners and third parties using inflexible legacy technology systems. “The

data we were ingesting is difficult to deal with,” says MacLean. “How do we

harness incoming data from about 20 partners with technology environments

that we don’t control? The data’s never going to be clean. We decided to make

dealing with that complexity our strength and take on that burden. That’s where

we saw the true power of Databricks’ capabilities. We couldn’t have done this

without the tools their platform gives us.”

Databricks also enabled Coastal to scale from 40,000 customers (consumers

and small-medium businesses in the north Puget Sound region) to approximately

6 million customers served through their partner ecosystem and dramatically

increase the speed at which they integrate data from those partners. In one

notable case, Coastal was working with a new partner and faced the potential of

having to load data on 80,000 customers manually. “We pointed Databricks at it

and had 80,000 customers and the various data sources ingested, cleaned and

prepared for our business teams to use in two days,” says MacLean. “Previously,

that would have taken one to two months at least. We could not have done that

with any prior existing tool we tried.”

120E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

The bank’s use of Delta Sharing has also allowed Coastal to achieve success with One, an emerging fintech startup. One wanted to sunset its use of Google BigQuery,

which Coastal was using to ingest One’s data. The two organizations needed to work together to find a solution. Fortunately, One was also using Databricks. “We used

Delta Sharing, and after we gave them a workspace ID, we had tables of data showing up in our Databricks workspace in under 10 minutes,” says MacLean. (To read more

about how Coastal is working with One, read the blog.) MacLean says Coastal is a leader in skills, technology and modern tools for fintech partners.

DATA AND AI FOR GOOD

With a strong data foundation set, MacLean has a larger vision for her team. “Technologies like generative AI open up self-serve capabilities to so many business groups.

For example, as we explore how to reduce financial crimes, if you are taking a day to do an investigation, that doesn’t scale to thousands of transactions that might need

to be investigated,” says MacLean. “How do we move beyond the minimum regulatory requirements on paper around something like anti-money laundering and truly

reduce the impact of bad actors in the financial system?”

For MacLean this is about aligning her organization with Coastal’s larger mission to use finance to do better for all people. Said MacLean, “Where are we doing good in

terms of the application of technology and financial services? It’s not just about optimizing the speed of transactions. We care about doing better on behalf of our fellow

humans with the work that we do.”

121E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/blog/coastal-community-bank-builds-thriving-financial-ecosystem-databricks-data-intelligence

Powys Teaching Health Board — improving decision-making
to save lives faster

“The adoption of Databricks has ensured that we can future-proof our data capabilities.
It has transformed and modernized the way we work, and that has a direct impact on the
quality of care delivered to our community.”

— Jake Hammer, Chief Data Officer, Powys Teaching Health Board (PTHB)

The inability to access complete and high-quality data can have a direct impact on a healthcare system’s ability to deliver

optimal patient outcomes. Powys Teaching Health Board (PTHB), serving the largest county in Wales, is responsible for

planning and providing national health services for approximately a quarter of the country. However, roughly 50% of the data

they need to help inform patient-centric decisions doesn’t occur within Powys and is provided by neighboring organizations

in varying formats, slowing their ability to connect data with the quality of patient care. Converting all this data — from

patient activity (e.g., appointments) and workforce data (e.g., schedules) — to actionable insights is difficult when it comes

in from so many disparate sources. PTHB needed to break down these silos and make it easier for nontechnical teams to

access the data. With the Databricks Data Intelligence Platform, PTHB now has a unified view of all their various data streams,

empowering healthcare systems to make better decisions that enhance patient care.

I N D U S T R Y
Healthcare and Life Sciences

S O L U T I O N
Forward-Looking Intelligence

P L A T F O R M

Data Intelligence Platform,
Unity Catalog

C L O U D

Azure

< 1 year
To modernize data
infrastructure

40%
Decrease in time
to insight

65%
More productive with
Databricks Assistant

122E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

https://www.databricks.com/solutions/industries/healthcare-and-life-sciences
https://www.databricks.com/solutions/accelerators/forward-looking-intelligence
https://www.databricks.com/solutions/industries/telco-industry-solutions
https://www.databricks.com/product/data-intelligence-platform
https://www.databricks.com/product/unity-catalog
https://www.databricks.com/product/azure

IMPROVING DATA DEMOCRATIZATION WITH
A UNIFIED PLATFORM

PTHB chose the Databricks Data Intelligence Platform to house all new incoming

data, from any source. This includes the data for a large number of low-code

apps (e.g., Power Apps) so that Hammer’s team can now work with data that was

historically kept on paper — making it significantly easier for people to access

and analyze the data at scale.

Data governance is also critical, but creating standard processes was difficult

before transitioning to Databricks as their core platform. With Unity Catalog,

PTHB has a model where all of their security and governance is done only

once at the Databricks layer. “The level of auditing in Databricks gives us a

high level of assurance. We need to provide different levels of access to many

different individuals and systems,” added Hammer. “Having a tool that enables

us to confidently manage this complex security gives both ourselves and our

stakeholders assurance. We can more easily and securely share data with

partners.”

Deriving actionable insights on data through numerous Power BI dashboards with

ease is something PTHB could not do before. “Now HR has the data they need to

improve operational efficiency while protecting the bottom line,” said Hammer.

“They can self-serve any necessary data, and they can see where there are gaps

in rosters or inefficiencies in on-the-ground processes. Being able to access the

right data at the right time means they can be smarter with rostering, resource

management and scheduling.”

SILOS AND SYSTEM STRAIN HINDER
DATA-DRIVEN INSIGHTS

The demand for PTHB’s services has increased significantly over the years as

they’ve dealt with evolving healthcare needs and population growth. As new

patients enter the national healthcare system, so does the rise in data captured

about the patient, hospital operations and more. With this rapid influx of data

coming from various hospitals and healthcare systems around the country,

PTHB’s legacy system began to reach its performance and scalability limits,

quickly developing data access and ingestion bottlenecks that not only wasted

time, but directly impacted patient care. And as the diversity of data rose, their

legacy system buckled under the load.

“Our data sat in so many places that it caused major frustrations. Our on-

premises SQL warehouse couldn’t cope with the scale of our growing data

estate,” explained Jake Hammer, Chief Data Officer at PTHB. “We needed to move

away from manually copying data between places. Finding a platform that would

allow us to take advantage of the cloud and was flexible enough to safeguard our

data within a single view for all to easily access was critical.”

How could PTHB employees make data-driven decisions if the data was hard

to find and difficult to understand? Hammer realized that they needed to first

modernize their data infrastructure in the cloud and migrate to a platform

capable of unifying their data and making it readily available for downstream

analytics use cases: from optimizing staff schedules to providing actionable

insights for clinicians so they can provide timely and targeted care. Hammer’s

team estimated that it would take five to 10 years to modernize their tech stack

in this way if they were to follow their own processes and tech stack. But they

needed a solution now. Enter Databricks.

123E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

A modern stack and newfound efficiencies throughout the data workflow has

fueled Hammer’s ability to expand into more advanced use cases. “Data science

was an area we simply hadn’t thought about,” explained Hammer. “Now we have

the means to explore predictive use cases like forecasting feature utilization.”

Most importantly, PTHB has a solution that’s future-proof and can tackle any

data challenge, which is critical given how they are seeing a rapidly growing

environment of APIs, adoption of open standards and new sources of real-time

data. “I can trust our platform is future-proof, and I’m probably the only health

board to be able to say that in Wales at the moment,” said Hammer. “Just like with

the data science world, the prediction world was something we never thought

was possible. But now we have the technology to do anything we put our minds

and data to.”

FEDERATED LAKEHOUSE IMPROVES TEAM EFFICIENCY
AND REAL-TIME DATA ENHANCES PATIENT CARE

With the Databricks Data Intelligence Platform, PTHB has taken their first step

toward modernization by moving to the cloud in less than a year — a much

quicker timeline than their 10-year estimate — and providing a federated

lakehouse to unify all their data. Through the lakehouse, they are able to

seamlessly connect to their on-premises SQL warehouse and remote BigQuery

environment at NHS Wales to create a single view of their data estate. “With the

Databricks Platform, and by leveraging features such as Lakehouse Federation to

integrate remote data, PTHB data practitioners now work from a single source of

truth to improve decision-making and patient outcomes,” explained Hammer.

From an operational standpoint, the impact of a modern platform has been

significant, with efficiencies skyrocketing to an estimated 40% time savings

in building data pipelines for analytics. They also estimate spending 65% less

time answering questions from business data users with the help of Databricks

Assistant. This AI-powered tool accelerated training for PTHB, helping traditional

SQL staff embrace new programming languages and empowering them to be

more productive without overreliance on the data engineering team.

124E B O O K : T H E B I G B O O K O F D A T A E N G I N E E R I N G — 3 R D E D I T I O N

© Databricks 2024. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation. Privacy Policy | Terms of Use

About Databricks

Databricks is the data and AI company. More than 10,000

organizations worldwide — including Block, Comcast,

Condé Nast, Rivian, Shell and over 60% of the Fortune 500

— rely on the Databricks Data Intelligence Platform to take

control of their data and put it to work with AI. Databricks

is headquartered in San Francisco, with offices around

the globe, and was founded by the original creators of

Lakehouse, Apache Spark™, Delta Lake and MLflow. To learn

more, follow Databricks on LinkedIn, X and Facebook.

Tens of millions of production workloads run daily on Databricks
Easily ingest and transform batch and streaming data on the Databricks Data Intelligence Platform.

Orchestrate reliable production workflows while Databricks automatically manages your infrastructure

at scale. Increase the productivity of your teams with built-in data quality testing and support for

software development best practices.

Try Databricks free Get started with a free demo

http://www.apache.org/
https://databricks.com/privacy-policy
https://databricks.com/terms-of-use
https://www.linkedin.com/company/databricks
https://twitter.com/databricks
https://www.facebook.com/databricksinc
https://www.databricks.com/product/data-intelligence-platform
https://www.databricks.com/try-databricks?itm_data=bigbookofde3rdedition-herocta
https://www.databricks.com/resources/demos/videos/data-engineering/delta-live-tables-overview?itm_data=bigbookofde3rdedition-herocta

